Menu
×
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10).
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Rosenbaum D;Rosenbaum D; Saftig P; Saftig P
- Source:
The FEBS journal [FEBS J] 2024 Jul; Vol. 291 (13), pp. 2733-2766. Date of Electronic Publication: 2023 Jun 04.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
- Publication Information: Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
- Subject Terms: ADAM10 Protein*/metabolism ; ADAM10 Protein*/genetics ; Amyloid Precursor Protein Secretases*/metabolism ; Amyloid Precursor Protein Secretases*/genetics ; Membrane Proteins*/metabolism ; Membrane Proteins*/genetics; Humans ; Animals ; Neoplasms/genetics ; Neoplasms/metabolism ; Neoplasms/pathology ; Alzheimer Disease/metabolism ; Alzheimer Disease/genetics ; Alzheimer Disease/pathology ; Inflammation/metabolism ; Inflammation/genetics ; Inflammation/pathology
- Abstract: The 'A Disintegrin And Metalloproteinase 10' (ADAM10) has gained considerable attention due to its discovery as an 'α-secretase' involved in the nonamyloidogenic processing of the amyloid precursor protein, thereby possibly preventing the excessive generation of the amyloid beta peptide, which is associated with the pathogenesis of Alzheimer's disease. ADAM10 was found to exert many additional functions, cleaving about 100 different membrane proteins. ADAM10 is involved in many pathophysiological conditions, ranging from cancer and autoimmune disorders to neurodegeneration and inflammation. ADAM10 cleaves its substrates close to the plasma membrane, a process referred to as ectodomain shedding. This is a central step in the modulation of the functions of cell adhesion proteins and cell surface receptors. ADAM10 activity is controlled by transcriptional and post-translational events. The interaction of ADAM10 with tetraspanins and the way they functionally and structurally depend on each other is another topic of interest. In this review, we will summarize findings on how ADAM10 is regulated and what is known about the biology of the protease. We will focus on novel aspects of the molecular biology and pathophysiology of ADAM10 that were previously poorly covered, such as the role of ADAM10 on extracellular vesicles, its contribution to virus entry, and its involvement in cardiac disease, cancer, inflammation, and immune regulation. ADAM10 has emerged as a regulator controlling cell surface proteins during development and in adult life. Its involvement in disease states suggests that ADAM10 may be exploited as a therapeutic target to treat conditions associated with a dysfunctional proteolytic activity.
(© 2023 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.) - References: Lopez‐Otin C & Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283, 30433–30437.
Weber S & Saftig P (2012) Ectodomain shedding and ADAMs in development. Development 139, 3693–3709.
Becherer JD & Blobel CP (2003) Biochemical properties and functions of membrane‐anchored metalloprotease‐disintegrin proteins (ADAMs). Curr Top Dev Biol 54, 101–123.
Lichtenthaler SF, Lemberg MK & Fluhrer R (2018) Proteolytic ectodomain shedding of membrane proteins in mammals‐hardware, concepts, and recent developments. EMBO J 37, e99456.
De Strooper B & Annaert W (2010) Novel research horizons for presenilins and gamma‐secretases in cell biology and disease. Annu Rev Cell Dev Biol 26, 235–260.
Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6, 32–43.
Arribas J & Massague J (1995) Transforming growth factor‐alpha and beta‐amyloid precursor protein share a secretory mechanism. J Cell Biol 128, 433–441.
Alabi RO, Farber G & Blobel CP (2018) Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ‐specific vascular beds. Physiol Rev 98, 2025–2061.
Zunke F & Rose‐John S (2017) The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta Mol Cell Res 1864, 2059–2070.
Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C & Fahrenholz F (1999) Constitutive and regulated alpha‐secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 96, 3922–3927.
Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I et al. (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 30, 4833–4844.
Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, Kremmer E, Rossner S & Lichtenthaler SF (2010) ADAM10 is the physiologically relevant, constitutive alpha‐secretase of the amyloid precursor protein in primary neurons. EMBO J 29, 3020–3032.
Groot AJ & Vooijs MA (2012) The role of Adams in Notch signaling. Adv Exp Med Biol 727, 15–36.
Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K et al. (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha‐secretase activity in fibroblasts. Hum Mol Genet 11, 2615–2624.
Lichtenthaler SF (2012) Alpha‐secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr Alzheimer Res 9, 165–177.
Saftig P & Lichtenthaler SF (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog Neurobiol 135, 1–20.
Wetzel S, Seipold L & Saftig P (2017) The metalloproteinase ADAM10: a useful therapeutic target? Biochim Biophys Acta Mol Cell Res 1864, 2071–2081.
Prinzen C, Muller U, Endres K, Fahrenholz F & Postina R (2005) Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J 19, 1522–1524.
Corbett GT, Gonzalez FJ & Pahan K (2015) Activation of peroxisome proliferator‐activated receptor alpha stimulates ADAM10‐mediated proteolysis of APP. Proc Natl Acad Sci U S A 112, 8445–8450.
Cheng C, Li W, Zhang Z, Yoshimura S, Hao Q, Zhang C & Wang Z (2013) MicroRNA‐144 is regulated by activator protein‐1 (AP‐1) and decreases expression of Alzheimer disease‐related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem 288, 13748–13761.
Augustin R, Endres K, Reinhardt S, Kuhn PH, Lichtenthaler SF, Hansen J, Wurst W & Trumbach D (2012) Computational identification and experimental validation of microRNAs binding to the Alzheimer‐related gene ADAM10. BMC Med Genet 13, 35.
Seifert A, Dusterhoft S, Wozniak J, Koo CZ, Tomlinson MG, Nuti E, Rossello A, Cuffaro D, Yildiz D & Ludwig A (2021) The metalloproteinase ADAM10 requires its activity to sustain surface expression. Cell Mol Life Sci 78, 715–732.
Lopez‐Perez E, Zhang Y, Frank SJ, Creemers J, Seidah N & Checler F (2001) Constitutive alpha‐secretase cleavage of the beta‐amyloid precursor protein in the furin‐deficient LoVo cell line: involvement of the pro‐hormone convertase 7 and the disintegrin metalloprotease ADAM10. J Neurochem 76, 1532–1539.
Hwang EM, Kim SK, Sohn JH, Lee JY, Kim Y, Kim YS & Mook‐Jung I (2006) Furin is an endogenous regulator of alpha‐secretase associated APP processing. Biochem Biophys Res Commun 349, 654–659.
Kim M, Suh J, Romano D, Truong MH, Mullin K, Hooli B, Norton D, Tesco G, Elliott K, Wagner SL et al. (2009) Potential late‐onset Alzheimer's disease‐associated mutations in the ADAM10 gene attenuate {alpha}‐secretase activity. Hum Mol Genet 18, 3987–3996.
Wild‐Bode C, Fellerer K, Kugler J, Haass C & Capell A (2006) A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration. J Biol Chem 281, 23824–23829.
Ebsen H, Lettau M, Kabelitz D & Janssen O (2014) Identification of SH3 domain proteins interacting with the cytoplasmic tail of the a disintegrin and metalloprotease 10 (ADAM10). PLoS One 9, e102899.
Cisse MA, Sunyach C, Lefranc‐Jullien S, Postina R, Vincent B & Checler F (2005) The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J Biol Chem 280, 40624–40631.
Moss ML, Powell G, Miller MA, Edwards L, Qi B, Sang QX, De Strooper B, Tesseur I, Lichtenthaler SF, Taverna M et al. (2011) ADAM9 inhibition increases membrane activity of ADAM10 and controls alpha‐secretase processing of amyloid precursor protein. J Biol Chem 286, 40443–40451.
Tousseyn T, Thathiah A, Jorissen E, Raemaekers T, Konietzko U, Reiss K, Maes E, Snellinx A, Serneels L, Nyabi O et al. (2009) ADAM10, the rate‐limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS‐9, ADAMS‐15, and the gamma‐secretase. J Biol Chem 284, 11738–11747.
Seipold L & Saftig P (2016) The emerging role of tetraspanins in the proteolytic processing of the amyloid precursor protein. Front Mol Neurosci 9, 149.
van Tetering G, van Diest P, Verlaan I, van der Wall E, Kopan R & Vooijs M (2009) Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem 284, 31018–31027.
Meyer‐Schwesinger C, Seipold L & Saftig P (2022) Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. Biochim Biophys Acta Mol Cell Res 1869, 119165.
Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M et al. (2004) A disintegrin‐metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113, 1456–1464.
Seegar TCM, Killingsworth LB, Saha N, Meyer PA, Patra D, Zimmerman B, Janes PW, Rubinstein E, Nikolov DB, Skiniotis G et al. (2017) Structural basis for regulated proteolysis by the alpha‐secretase ADAM10. Cell 171, 1638–1648.e7.
Reiss K, Leitzke S, Seidel J, Sperrhacke M & Bhakdi S (2022) Scramblases as regulators of proteolytic ADAM function. Membranes 12, 185.
Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E & Le Naour F (2008) Tetraspanins regulate ADAM10‐mediated cleavage of TNF‐alpha and epidermal growth factor. J Immunol 181, 7002–7013.
Xu D, Sharma C & Hemler ME (2009) Tetraspanin12 regulates ADAM10‐dependent cleavage of amyloid precursor protein. FASEB J 23, 3674–3681.
Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt‐Arras D, Schwanbeck R, Saftig P & Schwake M (2012) Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci 69, 2919–2932.
Koo CZ, Harrison N, Noy PJ, Szyroka J, Matthews AL, Hsia HE, Muller SA, Tushaus J, Goulding J, Willis K et al. (2020) The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex. J Biol Chem 295, 12822–12839.
Lipper CH, Gabriel KH, Seegar TCM, Durr KL, Tomlinson MG & Blacklow SC (2022) Crystal structure of the Tspan15 LEL domain reveals a conserved ADAM10 binding site. Structure 30, 206–214.e4.
Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P & Blobel CP (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164, 769–779.
Smith TM Jr, Tharakan A & Martin RK (2020) Targeting ADAM10 in cancer and autoimmunity. Front Immunol 11, 499.
Ripani E, Sacchetti A, Corda D & Alberti S (1998) Human Trop‐2 is a tumor‐associated calcium signal transducer. Int J Cancer 76, 671–676.
Trerotola M, Jernigan DL, Liu Q, Siddiqui J, Fatatis A & Languino LR (2013) Trop‐2 promotes prostate cancer metastasis by modulating beta(1) integrin functions. Cancer Res 73, 3155–3167.
Hsu EC, Rice MA, Bermudez A, Marques FJG, Aslan M, Liu S, Ghoochani A, Zhang CA, Chen YS, Zlitni A et al. (2020) Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proc Natl Acad Sci U S A 117, 2032–2042.
Trerotola M, Guerra E, Ali Z, Aloisi AL, Ceci M, Simeone P, Acciarito A, Zanna P, Vacca G, D'Amore A et al. (2021) Trop‐2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia 23, 415–428.
Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O'Shaughnessy J, Moroose RL, Santin AD, Abramson VG et al. (2019) Sacituzumab Govitecan‐hziy in refractory metastatic triple‐negative breast cancer. N Engl J Med 380, 741–751.
Trerotola M, Cantanelli P, Guerra E, Tripaldi R, Aloisi AL, Bonasera V, Lattanzio R, de Lange R, Weidle UH, Piantelli M et al. (2013) Upregulation of Trop‐2 quantitatively stimulates human cancer growth. Oncogene 32, 222–233.
Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P & Reiss K (2008) ADAM10 regulates endothelial permeability and T‐cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 102, 1192–1201.
Kouam PN, Rezniczek GA, Adamietz IA & Buhler H (2019) Ionizing radiation increases the endothelial permeability and the transendothelial migration of tumor cells through ADAM10‐activation and subsequent degradation of VE‐cadherin. BMC Cancer 19, 958.
Kabacik S & Raj K (2017) Ionising radiation increases permeability of endothelium through ADAM10‐mediated cleavage of VE‐cadherin. Oncotarget 8, 82049–82063.
Mueller AC, Piper M, Goodspeed A, Bhuvane S, Williams JS, Bhatia S, Phan AV, Van Court B, Zolman KL, Pena B et al. (2021) Induction of ADAM10 by radiation therapy drives fibrosis, resistance, and epithelial‐to‐mesenchyal transition in pancreatic cancer. Cancer Res 81, 3255–3269.
Kullander K & Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3, 475–486.
Kandouz M (2012) The Eph/Ephrin family in cancer metastasis: communication at the service of invasion. Cancer Metastasis Rev 31, 353–373.
Klein R (2012) Eph/ephrin signalling during development. Development 139, 4105–4109.
Wang Y, Zhou N, Li P, Wu H, Wang Q, Gao X, Wang X & Huang J (2019) EphA8 acts as an oncogene and contributes to poor prognosis in gastric cancer via regulation of ADAM10. J Cell Physiol 234, 20408–20419.
Boccalini G, Sassoli C, Bani D & Nistri S (2018) Relaxin induces up‐regulation of ADAM10 metalloprotease in RXFP1‐expressing cells by PI3K/AKT signaling. Mol Cell Endocrinol 472, 80–86.
Cai C, Zhang M, Liu L, Zhang H, Guo Y, Lan T, Xu Y, Ma P & Li S (2022) ADAM10‐cleaved ephrin‐A5 contributes to prostate cancer metastasis. Cell Death Dis 13, 453.
Wynn TA & Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18, 1028–1040.
Ho YY, Lagares D, Tager AM & Kapoor M (2014) Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 10, 390–402.
Lagares D, Ghassemi‐Kakroodi P, Tremblay C, Santos A, Probst CK, Franklin A, Santos DM, Grasberger P, Ahluwalia N, Montesi SB et al. (2017) ADAM10‐mediated ephrin‐B2 shedding promotes myofibroblast activation and organ fibrosis. Nat Med 23, 1405–1415.
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB et al. (2012) Safety, activity, and immune correlates of anti‐PD‐1 antibody in cancer. N Engl J Med 366, 2443–2454.
Dronca RS, Liu X, Harrington SM, Chen L, Cao S, Kottschade LA, McWilliams RR, Block MS, Nevala WK, Thompson MA et al. (2016) T cell Bim levels reflect responses to anti‐PD‐1 cancer therapy. JCI Insight 1, e86014.
Patel SP & Kurzrock R (2015) PD‐L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14, 847–856.
Orme JJ, Jazieh KA, Xie T, Harrington S, Liu X, Ball M, Madden B, Charlesworth MC, Azam TU, Lucien F et al. (2020) ADAM10 and ADAM17 cleave PD‐L1 to mediate PD‐(L)1 inhibitor resistance. Onco Targets Ther 9, 1744980.
Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL et al. (2012) Immune inhibitory molecules LAG‐3 and PD‐1 synergistically regulate T‐cell function to promote tumoral immune escape. Cancer Res 72, 917–927.
Andrews LP, Somasundaram A, Moskovitz JM, Szymczak‐Workman AL, Liu C, Cillo AR, Lin H, Normolle DP, Moynihan KD, Taniuchi I et al. (2020) Resistance to PD1 blockade in the absence of metalloprotease‐mediated LAG3 shedding. Sci Immunol 5, eabc2728.
Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstein E & Altevogt P (2006) A role for exosomes in the constitutive and stimulus‐induced ectodomain cleavage of L1 and CD44. Biochem J 393, 609–618.
Kalluri R & LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367, eaau6977.
Seely JC (2017) A brief review of kidney development, maturation, developmental abnormalities, and drug toxicity: juvenile animal relevancy. J Toxicol Pathol 30, 125–133.
Spaan AN, van Strijp JAG & Torres VJ (2017) Leukocidins: staphylococcal bi‐component pore‐forming toxins find their receptors. Nat Rev Microbiol 15, 435–447.
Keller MD, Ching KL, Liang FX, Dhabaria A, Tam K, Ueberheide BM, Unutmaz D, Torres VJ & Cadwell K (2020) Decoy exosomes provide protection against bacterial toxins. Nature 579, 260–264.
Ezekwe EA Jr, Weng C & Duncan JA (2016) ADAM10 cell surface expression but not activity is critical for Staphylococcus aureus alpha‐hemolysin‐mediated activation of the NLRP3 inflammasome in human monocytes. Toxins 8, 95.
Virreira Winter S, Zychlinsky A & Bardoel BW (2016) Genome‐wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha‐hemolysin‐mediated toxicity. Sci Rep 6, 24242.
von Hoven G, Rivas AJ, Neukirch C, Klein S, Hamm C, Qin Q, Meyenburg M, Fuser S, Saftig P, Hellmann N et al. (2016) Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus alpha‐toxin action. Biochem J 473, 1929–1940.
Luga V, Zhang L, Viloria‐Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M & Wrana JL (2012) Exosomes mediate stromal mobilization of autocrine Wnt‐PCP signaling in breast cancer cell migration. Cell 151, 1542–1556.
Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, Zhang J, Chen L, Tang JH & Zhao JH (2014) Exosomes mediate drug resistance transfer in MCF‐7 breast cancer cells and a probable mechanism is delivery of P‐glycoprotein. Tumour Biol 35, 10773–10779.
Mullooly M, McGowan PM, Kennedy SA, Madden SF, Crown J, O' Donovan N & Duffy MJ (2015) ADAM10: a new player in breast cancer progression? Br J Cancer 113, 945–951.
Risha Y, Minic Z, Ghobadloo SM & Berezovski MV (2020) The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep 10, 13572.
Lambrecht BN, Vanderkerken M & Hammad H (2018) The emerging role of ADAM metalloproteinases in immunity. Nat Rev Immunol 18, 745–758.
Gibb DR, Saleem SJ, Kang DJ, Subler MA & Conrad DH (2011) ADAM10 overexpression shifts lympho‐ and myelopoiesis by dysregulating site 2/site 3 cleavage products of Notch. J Immunol 186, 4244–4252.
Chastagner P, Rubinstein E & Brou C (2017) Ligand‐activated Notch undergoes DTX4‐mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Sci Signal 10, eaag2989.
Gibb DR, El Shikh M, Kang DJ, Rowe WJ, El Sayed R, Cichy J, Yagita H, Tew JG, Dempsey PJ, Crawford HC et al. (2010) ADAM10 is essential for Notch2‐dependent marginal zone B cell development and CD23 cleavage in vivo. J Exp Med 207, 623–635.
Yamamoto M, Gohda J, Kobayashi A, Tomita K, Hirayama Y, Koshikawa N, Seiki M, Semba K, Akiyama T, Kawaguchi Y et al. (2022) Metalloproteinase‐dependent and TMPRSS2‐independent cell surface entry pathway of SARS‐CoV‐2 requires the furin cleavage site and the S2 domain of spike protein. MBio 13, e0051922.
Washburn T, Schweighoffer E, Gridley T, Chang D, Fowlkes BJ, Cado D & Robey E (1997) Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88, 833–843.
Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, Weinmaster G & Salmon P (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492.
Guy CS, Vignali KM, Temirov J, Bettini ML, Overacre AE, Smeltzer M, Zhang H, Huppa JB, Tsai YH, Lobry C et al. (2013) Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol 14, 262–270.
Maekawa Y, Ishifune C, Tsukumo S, Hozumi K, Yagita H & Yasutomo K (2015) Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat Med 21, 55–61.
Baaten BJ, Tinoco R, Chen AT & Bradley LM (2012) Regulation of antigen‐experienced T cells: lessons from the quintessential memory marker CD44. Front Immunol 3, 23.
Nagano O & Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95, 930–935.
Ebsen H, Lettau M, Kabelitz D & Janssen O (2015) Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol 65, 416–428.
Gay LJ & Felding‐Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11, 123–134.
Lewandrowski U, Wortelkamp S, Lohrig K, Zahedi RP, Wolters DA, Walter U & Sickmann A (2009) Platelet membrane proteomics: a novel repository for functional research. Blood 114, e10–e19.
Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK & Berndt MC (2007) Controlled shedding of platelet glycoprotein (GP)VI and GPIb‐IX‐V by ADAM family metalloproteinases. J Thromb Haemost 5, 1530–1537.
Maurer S, Kopp HG, Salih HR & Kropp KN (2020) Modulation of immune responses by platelet‐derived ADAM10. Front Immunol 11, 44.
Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold‐O'Donnell E, Farndale RW, Ware J et al. (2010) Platelets amplify inflammation in arthritis via collagen‐dependent microparticle production. Science 327, 580–583.
Dinkla S, van Cranenbroek B, van der Heijden WA, He X, Wallbrecher R, Dumitriu IE, van der Ven AJ, Bosman GJ, Koenen HJ & Joosten I (2016) Platelet microparticles inhibit IL‐17 production by regulatory T cells through P‐selectin. Blood 127, 1976–1986.
Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG & Steinle A (2008) Tumor‐associated MICA is shed by ADAM proteases. Cancer Res 68, 6368–6376.
Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Furst D, Mytilineos J, Kalthoff H, Janssen O, Oberg HH et al. (2013) Shedding of endogenous MHC class I‐related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer 133, 1557–1566.
Maurer S, Kropp KN, Klein G, Steinle A, Haen SP, Walz JS, Hinterleitner C, Marklin M, Kopp HG & Salih HR (2018) Platelet‐mediated shedding of NKG2D ligands impairs NK cell immune‐surveillance of tumor cells. Onco Targets Ther 7, e1364827.
Tomlinson MG (2009) Platelet tetraspanins: small but interesting. J Thromb Haemost 7, 2070–2073.
Noy PJ, Yang J, Reyat JS, Matthews AL, Charlton AE, Furmston J, Rogers DA, Rainger GE & Tomlinson MG (2016) TspanC8 Tetraspanins and A Disintegrin and Metalloprotease 10 (ADAM10) interact via their extracellular regions: EVIDENCE FOR DISTINCT BINDING MECHANISMS FOR DIFFERENT TspanC8 PROTEINS. J Biol Chem 291, 3145–3157.
Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Lian L, Fairn GD, Cockcroft S, Durham A, Krishnaswamy S et al. (2017) Phosphatidylinositol transfer protein‐alpha in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nat Commun 8, 1216.
Kasperkiewicz M, Ellebrecht CT, Takahashi H, Yamagami J, Zillikens D, Payne AS & Amagai M (2017) Pemphigus. Nat Rev Dis Primers 3, 17026.
Chernyavsky AI, Arredondo J, Kitajima Y, Sato‐Nagai M & Grando SA (2007) Desmoglein versus non‐desmoglein signaling in pemphigus acantholysis: characterization of novel signaling pathways downstream of pemphigus vulgaris antigens. J Biol Chem 282, 13804–13812.
Cirillo N, AlShwaimi E, McCullough M & Prime SS (2014) Pemphigus vulgaris autoimmune globulin induces Src‐dependent tyrosine‐phosphorylation of plakophilin 3 and its detachment from desmoglein 3. Autoimmunity 47, 134–140.
Spindler V & Waschke J (2018) Pemphigus‐A disease of desmosome dysfunction caused by multiple mechanisms. Front Immunol 9, 136.
Ivars M, Espana A, Alzuguren P, Pelacho B, Lasarte JJ & Lopez‐Zabalza MJ (2020) The involvement of ADAM10 in acantholysis in mucocutaneous pemphigus vulgaris depends on the autoantibody profile of each patient. Br J Dermatol 182, 1194–1204.
Kugelmann D, Anders M, Sigmund AM, Egu DT, Eichkorn RA, Yazdi AS, Sardy M, Hertl M, Didona D, Hashimoto T et al. (2022) Role of ADAM10 and ADAM17 in the regulation of keratinocyte adhesion in pemphigus vulgaris. Front Immunol 13, 884248.
Bech‐Serra JJ, Santiago‐Josefat B, Esselens C, Saftig P, Baselga J, Arribas J & Canals F (2006) Proteomic identification of desmoglein 2 and activated leukocyte cell adhesion molecule as substrates of ADAM17 and ADAM10 by difference gel electrophoresis. Mol Cell Biol 26, 5086–5095.
Garrod D & Tabernero L (2014) Hyper‐adhesion: a unique property of desmosomes. Cell Commun Adhes 21, 249–256.
Gonzales KAU & Fuchs E (2017) Skin and its regenerative powers: an Alliance between stem cells and their niche. Dev Cell 43, 387–401.
Sakamoto K, Jin SP, Goel S, Jo JH, Voisin B, Kim D, Nadella V, Liang H, Kobayashi T, Huang X et al. (2021) Disruption of the endopeptidase ADAM10‐Notch signaling axis leads to skin dysbiosis and innate lymphoid cell‐mediated hair follicle destruction. Immunity 54, 2321–2337.e10.
Forbes JM & Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93, 137–188.
Yamagishi SI, Nakamura N & Matsui T (2017) Glycation and cardiovascular disease in diabetes: a perspective on the concept of metabolic memory. J Diabetes 9, 141–148.
Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P & Bianchi ME (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane‐bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 22, 3716–3727.
Ragavi R, Adole PS, Vinod KV & Pillai AA (2022) Altered expression of a disintegrin and metalloproteinase 10 in peripheral blood mononuclear cells in type 2 diabetes mellitus patients with the acute coronary syndrome: a pilot study. Endocrine 77, 461–468.
Kuro‐o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E et al. (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51.
Kuro OM (2019) The klotho proteins in health and disease. Nat Rev Nephrol 15, 27–44.
Pavlatou MG, Remaley AT & Gold PW (2016) Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry 6, e876.
Chen CD, Podvin S, Gillespie E, Leeman SE & Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A 104, 19796–19801.
Unger RH (2006) Klotho‐induced insulin resistance: a blessing in disguise? Nat Med 12, 56–57.
Yoon J, Liu Z, Lee E, Liu L, Ferre S, Pastor J, Zhang J, Moe OW, Chang AN & Miller RT (2021) Physiologic regulation of systemic Klotho levels by renal CaSR signaling in response to CaSR ligands and pH o. J Am Soc Nephrol 32, 3051–3065.
Wilke GA & Bubeck Wardenburg J (2010) Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha‐hemolysin‐mediated cellular injury. Proc Natl Acad Sci U S A 107, 13473–13478.
Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y & Bubeck Wardenburg J (2011) A Staphylococcus aureus pore‐forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17, 1310–1314.
Lemjabbar H & Basbaum C (2002) Platelet‐activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 8, 41–46.
Shah J, Rouaud F, Guerrera D, Vasileva E, Popov LM, Kelley WL, Rubinstein E, Carette JE, Amieva MR & Citi S (2018) A dock‐and‐lock mechanism clusters ADAM10 at cell‐cell junctions to promote alpha‐toxin cytotoxicity. Cell Rep 25, 2132–2147.e7.
Jia HP, Look DC, Tan P, Shi L, Hickey M, Gakhar L, Chappell MC, Wohlford‐Lenane C & McCray PB Jr (2009) Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 297, L84–L96.
Niehues RV, Wozniak J, Wiersch F, Lilienthal E, Tacken N, Schumertl T, Garbers C, Ludwig A & Dusterhoft S (2022) The collectrin‐like part of the SARS‐CoV‐1 and ‐2 receptor ACE2 is shed by the metalloproteinases ADAM10 and ADAM17. FASEB J 36, e22234.
Jocher G, Grass V, Tschirner SK, Riepler L, Breimann S, Kaya T, Oelsner M, Hamad MS, Hofmann LI, Blobel CP et al. (2022) ADAM10 and ADAM17 promote SARS‐CoV‐2 cell entry and spike protein‐mediated lung cell fusion. EMBO Rep 23, e54305.
Okamori S, Ishii M, Asakura T, Suzuki S, Namkoong H, Kagawa S, Hegab AE, Yagi K, Kamata H, Kusumoto T et al. (2021) ADAM10 partially protects mice against influenza pneumonia by suppressing specific myeloid cell population. Am J Physiol Lung Cell Mol Physiol 321, L872–L884.
Friedrich BM, Murray JL, Li G, Sheng J, Hodge TW, Rubin DH, O'Brien WA & Ferguson MR (2011) A functional role for ADAM10 in human immunodeficiency virus type‐1 replication. Retrovirology 8, 32.
Endsley MA, Somasunderam AD, Li G, Oezguen N, Thiviyanathan V, Murray JL, Rubin DH, Hodge TW, O'Brien WA, Lewis B et al. (2014) Nuclear trafficking of the HIV‐1 pre‐integration complex depends on the ADAM10 intracellular domain. Virology 454‐455, 60–66.
Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V et al. (2003) The disintegrin‐like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1‐mediated cell‐cell adhesion. Blood 102, 1186–1195.
Klapproth E, Witt A, Klose P, Wiedemann J, Vavilthota N, Kunzel SR, Kammerer S, Gunscht M, Sprott D, Lesche M et al. (2022) Targeting cardiomyocyte ADAM10 ectodomain shedding promotes survival early after myocardial infarction. Nat Commun 13, 7648.
Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D'Hooge R, Stroobants S, Ahmed T, Balschun D, Willem M et al. (2013) Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci 33, 12915–12928, 12928a.
Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, Herber J, Ludwig A, Kremmer E, Montag D et al. (2016) Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. Elife 5, e12748.
Lo Sardo V, Zuccato C, Gaudenzi G, Vitali B, Ramos C, Tartari M, Myre MA, Walker JA, Pistocchi A, Conti L et al. (2012) An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10‐Ncadherin. Nat Neurosci 15, 713–721.
Vezzoli E, Caron I, Talpo F, Besusso D, Conforti P, Battaglia E, Sogne E, Falqui A, Petricca L, Verani M et al. (2019) Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington's disease. J Clin Invest 129, 2390–2403.
Cozzolino F, Vezzoli E, Cheroni C, Besusso D, Conforti P, Valenza M, Iacobucci I, Monaco V, Birolini G, Bombaci M et al. (2021) ADAM10 hyperactivation acts on piccolo to deplete synaptic vesicle stores in Huntington's disease. Hum Mol Genet 30, 1175–1187.
Ludwig A, Hundhausen C, Lambert MH, Broadway N, Andrews RC, Bickett DM, Leesnitzer MA & Becherer JD (2005) Metalloproteinase inhibitors for the disintegrin‐like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester‐inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 8, 161–171.
Dreymueller D, Uhlig S & Ludwig A (2015) ADAM‐family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 308, L325–L343.
Zocchi MR, Camodeca C, Nuti E, Rossello A, Vene R, Tosetti F, Dapino I, Costa D, Musso A & Poggi A (2016) ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D‐mediated killing. Onco Targets Ther 5, e1123367.
Duffy MJ, Mullooly M, O'Donovan N, Sukor S, Crown J, Pierce A & McGowan PM (2011) The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics 8, 9.
Fridman JS, Caulder E, Hansbury M, Liu X, Yang G, Wang Q, Lo Y, Zhou BB, Pan M, Thomas SM et al. (2007) Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res 13, 1892–1902.
Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E, Lo Y, Baribaud F, Mikami I, Reguart N et al. (2006) Targeting ADAM‐mediated ligand cleavage to inhibit HER3 and EGFR pathways in non‐small cell lung cancer. Cancer Cell 10, 39–50.
Grabowska MM, Sandhu B & Day ML (2012) EGF promotes the shedding of soluble E‐cadherin in an ADAM10‐dependent manner in prostate epithelial cells. Cell Signal 24, 532–538.
Mathews JA, Ford J, Norton S, Kang D, Dellinger A, Gibb DR, Ford AQ, Massay H, Kepley CL, Scherle P et al. (2011) A potential new target for asthma therapy: a disintegrin and metalloprotease 10 (ADAM10) involvement in murine experimental asthma. Allergy 66, 1193–1200.
Atapattu L, Saha N, Llerena C, Vail ME, Scott AM, Nikolov DB, Lackmann M & Janes PW (2012) Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J Cell Sci 125, 6084–6093.
Atapattu L, Saha N, Chheang C, Eissman MF, Xu K, Vail ME, Hii L, Llerena C, Liu Z, Horvay K et al. (2016) An activated form of ADAM10 is tumor selective and regulates cancer stem‐like cells and tumor growth. J Exp Med 213, 1741–1757.
Yan H, Vail ME, Hii L, Guo N, McMurrick PJ, Oliva K, Wilkins S, Saha N, Nikolov DB, Lee FT et al. (2022) Preferential antibody and drug conjugate targeting of the ADAM10 metalloprotease in tumours. Cancers 14, 3171.
Saha N, Baek DS, Mendoza RP, Robev D, Xu Y, Goldgur Y, De La Cruz MJ, de Stanchina E, Janes PW, Xu K et al. (2023) Fully human monoclonal antibody targeting activated ADAM10 on colorectal cancer cells. Biomed Pharmacother 161, 114494.
Yamamoto K, Trad A, Baumgart A, Huske L, Lorenzen I, Chalaris A, Grotzinger J, Dechow T, Scheller J & Rose‐John S (2012) A novel bispecific single‐chain antibody for ADAM17 and CD3 induces T‐cell‐mediated lysis of prostate cancer cells. Biochem J 445, 135–144.
Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M et al. (2008) Tumor regression in cancer patients by very low doses of a T cell‐engaging antibody. Science 321, 974–977.
Lutterbuese R, Raum T, Kischel R, Hoffmann P, Mangold S, Rattel B, Friedrich M, Thomas O, Lorenczewski G, Rau D et al. (2010) T cell‐engaging BiTE antibodies specific for EGFR potently eliminate KRAS‐ and BRAF‐mutated colorectal cancer cells. Proc Natl Acad Sci U S A 107, 12605–12610.
Moss ML, Bomar M, Liu Q, Sage H, Dempsey P, Lenhart PM, Gillispie PA, Stoeck A, Wildeboer D, Bartsch JW et al. (2007) The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. J Biol Chem 282, 35712–35721.
Van Wart HE & Birkedal‐Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87, 5578–5582.
Soto‐Gamez A, Chen D, Nabuurs AGE, Quax WJ, Demaria M & Boersma YL (2020) A bispecific inhibitor of the EGFR/ADAM17 axis decreases cell proliferation and migration of EGFR‐dependent cancer cells. Cancer 12, 411.
Madoux F, Dreymuller D, Pettiloud JP, Santos R, Becker‐Pauly C, Ludwig A, Fields GB, Bannister T, Spicer TP, Cudic M et al. (2016) Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite‐binding glycosylated substrate. Sci Rep 6, 11.
Minond D (2020) Novel approaches and challenges of discovery of exosite modulators of a disintegrin and metalloprotease 10. Front Mol Biosci 7, 75.
Zhang S, Salemi J, Hou H, Zhu Y, Mori T, Giunta B, Obregon D & Tan J (2010) Rapamycin promotes beta‐amyloid production via ADAM‐10 inhibition. Biochem Biophys Res Commun 398, 337–341.
Soundararajan R, Sayat R, Robertson GS & Marignani PA (2009) Triptolide: an inhibitor of a disintegrin and metalloproteinase 10 (ADAM10) in cancer cells. Cancer Biol Ther 8, 2054–2062.
Jackson HW, Defamie V, Waterhouse P & Khokha R (2017) TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer 17, 38–53.
Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knauper V, Docherty AJ & Murphy G (2000) The in vitro activity of ADAM‐10 is inhibited by TIMP‐1 and TIMP‐3. FEBS Lett 473, 275–279.
Bovolenta P, Esteve P, Ruiz JM, Cisneros E & Lopez‐Rios J (2008) Beyond Wnt inhibition: new functions of secreted Frizzled‐related proteins in development and disease. J Cell Sci 121, 737–746.
Esteve P, Sandonis A, Cardozo M, Malapeira J, Ibanez C, Crespo I, Marcos S, Gonzalez‐Garcia S, Toribio ML, Arribas J et al. (2011) SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci 14, 562–569.
Muraguchi T, Takegami Y, Ohtsuka T, Kitajima S, Chandana EP, Omura A, Miki T, Takahashi R, Matsumoto N, Ludwig A et al. (2007) RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci 10, 838–845.
Nakamura M, Li Y, Choi BR, Matas‐Rico E, Troncoso J, Takahashi C & Sockanathan S (2021) GDE2‐RECK controls ADAM10 alpha‐secretase‐mediated cleavage of amyloid precursor protein. Sci Transl Med 13, eabe6178.
Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ et al. (2017) Targeting neuronal activity‐regulated neuroligin‐3 dependency in high‐grade glioma. Nature 549, 533–537.
Liu R, Qin XP, Zhuang Y, Zhang Y, Liao HB, Tang JC, Pan MX, Zeng FF, Lei Y, Lei RX et al. (2018) Glioblastoma recurrence correlates with NLGN3 levels. Cancer Med 7, 2848–2859.
Kohutek ZA, diPierro CG, Redpath GT & Hussaini IM (2009) ADAM‐10‐mediated N‐cadherin cleavage is protein kinase C‐alpha dependent and promotes glioblastoma cell migration. J Neurosci 29, 4605–4615.
Kohga K, Takehara T, Tatsumi T, Miyagi T, Ishida H, Ohkawa K, Kanto T, Hiramatsu N & Hayashi N (2009) Anticancer chemotherapy inhibits MHC class I‐related chain a ectodomain shedding by downregulating ADAM10 expression in hepatocellular carcinoma. Cancer Res 69, 8050–8057.
Wolpert F, Tritschler I, Steinle A, Weller M & Eisele G (2014) A disintegrin and metalloproteinases 10 and 17 modulate the immunogenicity of glioblastoma‐initiating cells. Neuro Oncol 16, 382–391.
Gjorgjevski M, Hannen R, Carl B, Li Y, Landmann E, Buchholz M, Bartsch JW & Nimsky C (2019) Molecular profiling of the tumor microenvironment in glioblastoma patients: correlation of microglia/macrophage polarization state with metalloprotease expression profiles and survival. Biosci Rep 39, BSR20182361.
Liu PC, Liu X, Li Y, Covington M, Wynn R, Huber R, Hillman M, Yang G, Ellis D, Marando C et al. (2006) Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells. Cancer Biol Ther 5, 657–664.
Zheng H, Zhong A, Xie S, Wang Y, Sun J, Zhang J, Tong Y, Chen M, Zhang G, Ma Q et al. (2019) Elevated serum HER‐2 predicts poor prognosis in breast cancer and is correlated to ADAM10 expression. Cancer Med 8, 679–685.
Ebbing EA, Medema JP, Damhofer H, Meijer SL, Krishnadath KK, van Berge Henegouwen MI, Bijlsma MF & van Laarhoven HW (2016) ADAM10‐mediated release of heregulin confers resistance to trastuzumab by activating HER3. Oncotarget 7, 10243–10254.
Romero Y, Wise R & Zolkiewska A (2020) Proteolytic processing of PD‐L1 by ADAM proteases in breast cancer cells. Cancer Immunol Immunother 69, 43–55.
Feldinger K, Generali D, Kramer‐Marek G, Gijsen M, Ng TB, Wong JH, Strina C, Cappelletti M, Andreis D, Li JL et al. (2014) ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer. Oncotarget 5, 6633–6646.
Stasikowska‐Kanicka O, Wagrowska‐Danilewicz M, Kulicka P & Danilewicz M (2018) Overexpression of ADAM10 in oral squamous cell carcinoma with metastases. Pol J Pathol 69, 67–72.
Su CW, Chang YC, Chien MH, Hsieh YH, Chen MK, Lin CW & Yang SF (2019) Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. Cell Death Dis 10, 793.
Jones AV, Lambert DW, Speight PM & Whawell SA (2013) ADAM 10 is over expressed in oral squamous cell carcinoma and contributes to invasive behaviour through a functional association with alphavbeta6 integrin. FEBS Lett 587, 3529–3534.
Chen S, Ying M, Lin X, Zheng X, Liu C & Liu H (2015) Expression of MICA in oral squamous carcinoma cells and its effect on NK cells. Int J Clin Exp Med 8, 18208–18212.
Mullooly M, McGowan PM, Crown J & Duffy MJ (2016) The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther 17, 870–880.
Tosetti F, Vene R, Camodeca C, Nuti E, Rossello A, D'Arrigo C, Galante D, Ferrari N, Poggi A & Zocchi MR (2018) Specific ADAM10 inhibitors localize in exosome‐like vesicles released by Hodgkin lymphoma and stromal cells and prevent sheddase activity carried to bystander cells. Onco Targets Ther 7, e1421889.
Hansen HP, Trad A, Dams M, Zigrino P, Moss M, Tator M, Schon G, Grenzi PC, Bachurski D, Aquino B et al. (2016) CD30 on extracellular vesicles from malignant Hodgkin cells supports damaging of CD30 ligand‐expressing bystander cells with Brentuximab‐Vedotin, in vitro. Oncotarget 7, 30523–30535.
Zingoni A, Cecere F, Vulpis E, Fionda C, Molfetta R, Soriani A, Petrucci MT, Ricciardi MR, Fuerst D, Amendola MG et al. (2015) Genotoxic stress induces senescence‐associated ADAM10‐dependent release of NKG2D MIC ligands in multiple myeloma cells. J Immunol 195, 736–748.
Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez‐Irizarry C, Blacklow SC, Look AT & Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271.
Tosello V & Ferrando AA (2013) The NOTCH signaling pathway: role in the pathogenesis of T‐cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 4, 199–210.
Sulis ML, Saftig P & Ferrando AA (2011) Redundancy and specificity of the metalloprotease system mediating oncogenic NOTCH1 activation in T‐ALL. Leukemia 25, 1564–1569.
Oh ST, Schramme A, Stark A, Tilgen W, Gutwein P & Reichrath J (2008) Overexpression of ADAM 10 and ADAM 12 in lesional psoriatic skin. Br J Dermatol 158, 1371–1373.
Tippmann F, Hundt J, Schneider A, Endres K & Fahrenholz F (2009) Up‐regulation of the alpha‐secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J 23, 1643–1654.
Higashiyama S & Nanba D (2005) ADAM‐mediated ectodomain shedding of HB‐EGF in receptor cross‐talk. Biochim Biophys Acta 1751, 110–117.
Weber S, Niessen MT, Prox J, Lullmann‐Rauch R, Schmitz A, Schwanbeck R, Blobel CP, Jorissen E, de Strooper B, Niessen CM et al. (2011) The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch‐mediated signaling. Development 138, 495–505.
Orme JJ, Du Y, Vanarsa K, Mayeux J, Li L, Mutwally A, Arriens C, Min S, Hutcheson J, Davis LS et al. (2016) Heightened cleavage of Axl receptor tyrosine kinase by ADAM metalloproteases may contribute to disease pathogenesis in SLE. Clin Immunol 169, 58–68.
Hoffmann FS, Kuhn PH, Laurent SA, Hauck SM, Berer K, Wendlinger SA, Krumbholz M, Khademi M, Olsson T, Dreyling M et al. (2015) The immunoregulator soluble TACI is released by ADAM10 and reflects B cell activation in autoimmunity. J Immunol 194, 542–552.
Lownik JC, Luker AJ, Damle SR, Cooley LF, El Sayed R, Hutloff A, Pitzalis C, Martin RK, El Shikh MEM & Conrad DH (2017) ADAM10‐mediated ICOS ligand shedding on B cells is necessary for proper T cell ICOS regulation and T follicular helper responses. J Immunol 199, 2305–2315.
Jones B, Koch AE & Ahmed S (2011) Pathological role of fractalkine/CX3CL1 in rheumatic diseases: a unique chemokine with multiple functions. Front Immunol 2, 82.
Nishie W (2014) Update on the pathogenesis of bullous pemphigoid: an autoantibody‐mediated blistering disease targeting collagen XVII. J Dermatol Sci 73, 179–186.
Shen S, Ke Y, Dang E, Fang H, Chang Y, Zhang J, Zhu Z, Shao S, Qiao P, Zhang T et al. (2018) Semaphorin 4D from CD15(+) granulocytes via ADAM10‐induced cleavage contributes to antibody production in bullous pemphigoid. J Invest Dermatol 138, 588–597.
McInnes IB & Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365, 2205–2219.
Isozaki T, Rabquer BJ, Ruth JH, Haines GK 3rd & Koch AE (2013) ADAM‐10 is overexpressed in rheumatoid arthritis synovial tissue and mediates angiogenesis. Arthritis Rheum 65, 98–108.
Isozaki T, Ishii S, Nishimi S, Nishimi A, Oguro N, Seki S, Miura Y, Miwa Y, Oh K, Toyoshima Y et al. (2015) A disintegrin and metalloprotease‐10 is correlated with disease activity and mediates monocyte migration and adhesion in rheumatoid arthritis. Transl Res 166, 244–253.
Zhao R, Wang A, Hall KC, Otero M, Weskamp G, Zhao B, Hill D, Goldring MB, Glomski K & Blobel CP (2014) Lack of ADAM10 in endothelial cells affects osteoclasts at the chondro‐osseus junction. J Orthop Res 32, 224–230.
Isozaki T, Nishimi S, Nishimi A, Saito M, Miwa Y, Toyoshima Y, Inagaki K & Kasama T (2017) A disintegrin and metalloproteinase (ADAM)‐10 as a predictive factor for tocilizumab effectiveness in rheumatoid arthritis. Mod Rheumatol 27, 782–786.
Muller M, Wetzel S, Kohn‐Gaone J, Chalupsky K, Lullmann‐Rauch R, Barikbin R, Bergmann J, Wohner B, Zbodakova O, Leuschner I et al. (2016) A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis. Oncotarget 7, 17431–17441.
Bourd‐Boittin K, Basset L, Bonnier D, L'Helgoualc'h A, Samson M & Theret N (2009) CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver. J Cell Mol Med 13, 1526–1535.
van der Vorst EP, Keijbeck AA, de Winther MP & Donners MM (2012) A disintegrin and metalloproteases: molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis 224, 302–308.
van der Vorst EP, Jeurissen M, Wolfs IM, Keijbeck A, Theodorou K, Wijnands E, Schurgers L, Weber S, Gijbels MJ, Hamers AA et al. (2015) Myeloid A disintegrin and metalloproteinase domain 10 deficiency modulates atherosclerotic plaque composition by shifting the balance from inflammation toward fibrosis. Am J Pathol 185, 1145–1155.
Donners MM, Wolfs IM, Olieslagers S, Mohammadi‐Motahhari Z, Tchaikovski V, Heeneman S, van Buul JD, Caolo V, Molin DG, Post MJ et al. (2010) A disintegrin and metalloprotease 10 is a novel mediator of vascular endothelial growth factor‐induced endothelial cell function in angiogenesis and is associated with atherosclerosis. Arterioscler Thromb Vasc Biol 30, 2188–2195.
Fahrenholz F & Postina R (2006) Alpha‐secretase activation – an approach to Alzheimer's disease therapy. Neurodegener Dis 3, 255–261.
Fukasawa H, Nakagomi M, Yamagata N, Katsuki H, Kawahara K, Kitaoka K, Miki T & Shudo K (2012) Tamibarotene: a candidate retinoid drug for Alzheimer's disease. Biol Pharm Bull 35, 1206–1212.
Postina R (2012) Activation of alpha‐secretase cleavage. J Neurochem 120 (Suppl 1), 46–54.
Holthoewer D, Endres K, Schuck F, Hiemke C, Schmitt U & Fahrenholz F (2012) Acitretin, an enhancer of alpha‐secretase expression, crosses the blood‐brain barrier and is not eliminated by P‐glycoprotein. Neurodegener Dis 10, 224–228.
Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF & Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease. Neurochem Int 54, 111–118.
Heneka MT, Reyes‐Irisarri E, Hull M & Kummer MP (2011) Impact and therapeutic potential of PPARs in Alzheimer's disease. Curr Neuropharmacol 9, 643–650.
Meineck M, Schuck F, Abdelfatah S, Efferth T & Endres K (2016) Identification of phlogacantholide C as a novel ADAM10 enhancer from traditional Chinese medicinal plants. Medicines 3, 30.
Obregon DF, Rezai‐Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW, Shytle D et al. (2006) ADAM10 activation is required for green tea (−)‐epigallocatechin‐3‐gallate‐induced alpha‐secretase cleavage of amyloid precursor protein. J Biol Chem 281, 16419–16427.
Fernandez JW, Rezai‐Zadeh K, Obregon D & Tan J (2010) EGCG functions through estrogen receptor‐mediated activation of ADAM10 in the promotion of non‐amyloidogenic processing of APP. FEBS Lett 584, 4259–4267.
Marcade M, Bourdin J, Loiseau N, Peillon H, Rayer A, Drouin D, Schweighoffer F & Desire L (2008) Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 106, 392–404.
Etcheberrigaray R, Tan M, Dewachter I, Kuiperi C, Van der Auwera I, Wera S, Qiao L, Bank B, Nelson TJ, Kozikowski AP et al. (2004) Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proc Natl Acad Sci U S A 101, 11141–11146.
Thompson RE, Tuchman AJ & Alkon DL (2022) Bryostatin placebo‐controlled trials indicate cognitive restoration above baseline for advanced Alzheimer's disease in the absence of Memantine1. J Alzheimers Dis 86, 1221–1229.
Kojro E, Postina R, Buro C, Meiringer C, Gehrig‐Burger K & Fahrenholz F (2006) The neuropeptide PACAP promotes the alpha‐secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J 20, 512–514. - Grant Information: SFB877-A3 Deutsche Forschungsgemeinschaft
- Contributed Indexing: Keywords: ADAM10; cancer; ectodomain shedding; immune system; regulation
- Accession Number: EC 3.4.24.81 (ADAM10 Protein)
EC 3.4.- (Amyloid Precursor Protein Secretases)
0 (Membrane Proteins)
EC 3.4.24.81 (ADAM10 protein, human) - Publication Date: Date Created: 20230523 Date Completed: 20240703 Latest Revision: 20240703
- Publication Date: 20240703
- Accession Number: 10.1111/febs.16870
- Accession Number: 37218105
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.