Restoration of coronary microvascular function by OGA overexpression in a high-fat diet with low-dose streptozotocin-induced type 2 diabetic mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Sage Publications Country of Publication: England NLM ID: 101234011 Publication Model: Print Cited Medium: Internet ISSN: 1752-8984 (Electronic) Linking ISSN: 14791641 NLM ISO Abbreviation: Diab Vasc Dis Res Subsets: MEDLINE
    • Publication Information:
      Publication: 2009- : London : Sage Publications
      Original Publication: Edgbaston, Birmingham, UK : Sherborne Gibbs, c2005-
    • Subject Terms:
    • Abstract:
      Sustained hyperglycemia results in excess protein O -GlcNAcylation, leading to vascular complications in diabetes. This study aims to investigate the role of O -GlcNAcylation in the progression of coronary microvascular disease (CMD) in inducible type 2 diabetic (T2D) mice generated by a high-fat diet with a single injection of low-dose streptozotocin. Inducible T2D mice exhibited an increase in protein O -GlcNAcylation in cardiac endothelial cells (CECs) and decreases in coronary flow velocity reserve (CFVR, an indicator of coronary microvascular function) and capillary density accompanied by increased endothelial apoptosis in the heart. Endothelial-specific O -GlcNAcase (OGA) overexpression significantly lowered protein O -GlcNAcylation in CECs, increased CFVR and capillary density, and decreased endothelial apoptosis in T2D mice. OGA overexpression also improved cardiac contractility in T2D mice. OGA gene transduction augmented angiogenic capacity in high-glucose treated CECs. PCR array analysis revealed that seven out of 92 genes show significant differences among control, T2D, and T2D + OGA mice, and Sp1 might be a great target for future study, the level of which was significantly increased by OGA in T2D mice. Our data suggest that reducing protein O -GlcNAcylation in CECs has a beneficial effect on coronary microvascular function, and OGA is a promising therapeutic target for CMD in diabetic patients.
    • References:
      Cardiol Rev. 2017 Jul/Aug;25(4):165-178. (PMID: 28574936)
      Anticancer Res. 2016 Aug;36(8):4370. (PMID: 27466565)
      Diabetes. 2021 Mar;70(3):665-679. (PMID: 33303689)
      Rev Cardiovasc Med. 2021 Mar 30;22(1):97-104. (PMID: 33792251)
      Trends Cardiovasc Med. 2015 Feb;25(2):98-103. (PMID: 25454903)
      J Am Heart Assoc. 2014 Mar 26;3(2):e000434. (PMID: 24670789)
      JCI Insight. 2021 Nov 8;6(21):. (PMID: 34747371)
      Diabetes. 2021 Jan;70(1):227-239. (PMID: 33051272)
      Mol Med. 2022 Sep 14;28(1):115. (PMID: 36104770)
      FASEB J. 2009 Jul;23(7):2176-85. (PMID: 19255254)
      Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1055-60. (PMID: 22972802)
      Metabolism. 1998 Jun;47(6):663-8. (PMID: 9627363)
      Eur Heart J. 2021 Nov 14;42(43):4431-4441. (PMID: 34529791)
      Front Physiol. 2018 Apr 06;9:341. (PMID: 29681862)
      Circ Res. 2005 May 13;96(9):1006-13. (PMID: 15817886)
      Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):651-7. (PMID: 18174452)
      Nutrients. 2019 Feb 28;11(3):. (PMID: 30823474)
      Oncotarget. 2017 May 29;8(33):55684-55714. (PMID: 28903453)
      Heart. 2014 May;100(10):806-13. (PMID: 23904360)
      Circ Res. 2010 Jul 23;107(2):171-85. (PMID: 20651294)
      Br J Pharmacol. 2015 Oct;172(19):4684-98. (PMID: 26140333)
      Pharmacol Res. 2017 Sep;123:114-121. (PMID: 28700893)
      Circulation. 2005 Apr 26;111(16):2073-85. (PMID: 15851615)
      Methods Find Exp Clin Pharmacol. 2009 May;31(4):249-61. (PMID: 19557203)
      Am J Physiol Cell Physiol. 2018 Jun 1;314(6):C732-C740. (PMID: 29513568)
      Eur Heart J Cardiovasc Imaging. 2020 Aug 1;21(8):887-895. (PMID: 31642902)
      Mol Metab. 2018 May;11:160-177. (PMID: 29525407)
      Circulation. 2017 Mar 14;135(11):1075-1092. (PMID: 28289007)
      Arterioscler Thromb Vasc Biol. 2019 Oct;39(10):1911-1924. (PMID: 31462094)
      Curr Opin Chem Biol. 2019 Dec;53:131-144. (PMID: 31654859)
      J Biomed Sci. 2022 Sep 4;29(1):64. (PMID: 36058931)
      Circ Res. 2012 Oct 12;111(9):1166-75. (PMID: 22896585)
      Cardiovasc Diabetol. 2011 Aug 04;10:73. (PMID: 21816064)
      Front Mol Biosci. 2021 Nov 16;8:751637. (PMID: 34869586)
      J Vis Exp. 2016 Jul 03;(113):. (PMID: 27404385)
      Pulm Circ. 2017 Feb 1;7(1):175-185. (PMID: 28680577)
      Ultrasound Med Biol. 2008 Jul;34(7):1053-62. (PMID: 18313201)
      PLoS One. 2014 Apr 09;9(4):e94599. (PMID: 24718615)
      Biochem Biophys Res Commun. 2017 Feb 26;484(1):79-84. (PMID: 28104396)
      Am J Physiol Cell Physiol. 2015 Nov 1;309(9):C593-9. (PMID: 26269457)
      Med Sci Monit. 2004 Apr;10(4):RA89-98. (PMID: 15039660)
      Eur Heart J. 2016 Dec 07;37(46):3461-3469. (PMID: 26392437)
      Sci Rep. 2018 Jul 12;8(1):10581. (PMID: 30002415)
      Circulation. 1995 Feb 1;91(3):635-40. (PMID: 7828287)
      Diabetes. 2012 Dec;61(12):3181-8. (PMID: 22933112)
      Biochem Biophys Res Commun. 2018 Jan 8;495(2):2098-2104. (PMID: 29253568)
      J Clin Invest. 2001 Nov;108(9):1341-8. (PMID: 11696579)
      Neth Heart J. 2007;15(6):209-15. (PMID: 17612685)
      J Am Coll Cardiol. 2008 Oct 21;52(17):1391-8. (PMID: 18940529)
      J Am Coll Cardiol. 2017 Jan 17;69(2):131-143. (PMID: 28081822)
      Circ Res. 2014 Mar 28;114(7):1094-102. (PMID: 24526702)
      Exp Ther Med. 2021 Apr;21(4):389. (PMID: 33680111)
      Cardiovasc Res. 2020 May 1;116(6):1186-1198. (PMID: 31504245)
      Can J Physiol Pharmacol. 2021 Nov;99(11):1175-1183. (PMID: 34081870)
      FASEB J. 2020 Jan;34(1):95-106. (PMID: 31914697)
      Nat Rev Cardiol. 2015 Jan;12(1):48-62. (PMID: 25311229)
      Metabolism. 2013 Aug;62(8):1123-30. (PMID: 23557591)
      Am J Physiol Regul Integr Comp Physiol. 2012 Oct 1;303(7):R689-99. (PMID: 22874425)
      FEBS J. 2015 Jan;282(2):224-58. (PMID: 25393971)
      Am J Physiol Cell Physiol. 2008 Jul;295(1):C221-30. (PMID: 18463230)
      J Biol Chem. 2015 Mar 13;290(11):7097-113. (PMID: 25596529)
      J Int Med Res. 2017 Dec;45(6):1901-1929. (PMID: 28643578)
      Cleve Clin J Med. 2021 Oct 1;88(10):561-571. (PMID: 34598921)
      JACC Cardiovasc Imaging. 2015 Feb;8(2):210-20. (PMID: 25677893)
      Am J Physiol Cell Physiol. 2013 Nov 15;305(10):C1033-40. (PMID: 23986204)
      J Cardiovasc Transl Res. 2013 Oct;6(5):715-28. (PMID: 23877202)
      Circulation. 2009 Oct 20;120(16):1555-7. (PMID: 19805646)
      Angiogenesis. 2009;12(3):267-74. (PMID: 19399631)
      Sci Signal. 2010 Jan 12;3(104):ra2. (PMID: 20068230)
      Front Endocrinol (Lausanne). 2022 Oct 26;13:1040014. (PMID: 36387851)
      J Am Coll Cardiol. 2018 Nov 27;72(21):2625-2641. (PMID: 30466521)
      Circulation. 2012 Oct 9;126(15):1858-68. (PMID: 22919001)
      Biochem J. 2017 Mar 7;474(6):983-1001. (PMID: 28008135)
      Am Heart J. 2001 Nov;142(5):857-63. (PMID: 11685175)
      Diabetologia. 2009 Apr;52(4):675-83. (PMID: 19169663)
      Circ Res. 2006 Jul 21;99(2):140-8. (PMID: 16778129)
      Am J Physiol Lung Cell Mol Physiol. 2015 Nov 1;309(9):L1027-36. (PMID: 26361875)
      Front Endocrinol (Lausanne). 2014 Oct 27;5:183. (PMID: 25386167)
    • Grant Information:
      R01 HL142214 United States HL NHLBI NIH HHS; R01 HL146764 United States HL NHLBI NIH HHS; R01 HL154754 United States HL NHLBI NIH HHS
    • Contributed Indexing:
      Keywords: Diabetes; angiogenesis; cardiovascular disease; endothelial dysfunction; tube formation
    • Accession Number:
      EC 3.2.1.52 (Acetylglucosaminidase)
      EC 3.2.1.50 (hexosaminidase C)
      5W494URQ81 (Streptozocin)
    • Publication Date:
      Date Created: 20230515 Date Completed: 20230524 Latest Revision: 20240603
    • Publication Date:
      20240603
    • Accession Number:
      PMC10196148
    • Accession Number:
      10.1177/14791641231173630
    • Accession Number:
      37186669