Urinary metabolites associate with the presence of diabetic kidney disease in type 2 diabetes and mediate the effect of inflammation on kidney complication.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aims: Diabetic kidney disease (DKD) is the one of the leading causes of end-stage kidney disease. Unraveling novel biomarker signatures capable to identify patients with DKD is favorable for tackle the burden. Here, we investigated the possible association between urinary metabolites and the presence of DKD in type 2 diabetes (T2D), and further, whether the associated metabolites improve discrimination of DKD and mediate the effect of inflammation on kidney involvement was evaluated.
      Methods: Two independent cohorts comprising 192 individuals (92 DKD) were analyzed. Urinary metabolites were analyzed by targeted metabolome profiling  and inflammatory cytokine IL-18 were measured by ELISA. Differentially expressed metabolites were selected and mediation analysis was carried out.
      Results: Seven potential metabolite biomarkers (i.e., S-Adenosyl-L-homocysteine, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid) were identified using the discovery and validation design. In the pooled analysis, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid were markedly and independently associated with DKD. The composite index of 7 potential metabolite biomarkers (CMI) mediated 32.99% of the significant association between the inflammatory IL-18 and DKD. Adding the metabolite biomarkers improved the discrimination of DKD.
      Conclusions: In T2D, several associated urinary metabolites were identified to improve the prediction of DKD. Whether interventions aimed at reducing CMI also reduce the risk of DKD especially in patients with high IL-18 needs further investigations.
      (© 2023. The Author(s).)
    • References:
      Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C (2019) A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int 96(5):1048–1050. (PMID: 31582227)
      Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS et al (2016) Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA 316(6):602–610. (PMID: 275329155444809)
      Zhang XX, Kong J, Yun K (2020) Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: a meta-analysis of observational studies. J Diabetes Res 2020:2315607. (PMID: 320901167023800)
      Wang F, Baden MY, Guasch-Ferre M, Wittenbecher C, Li J, Li Y et al (2022) Plasma metabolite profiles related to plant-based diets and the risk of type 2 diabetes. Diabetologia 65(7):1119–1132. (PMID: 353915399810389)
      Chai JC, Chen GC, Yu B, Xing J, Li J, Khambaty T et al (2022) Serum metabolomics of incident diabetes and glycemic changes in a population with high diabetes burden: the Hispanic community health study/study of latinos. Diabetes 71(6):1338–1349. (PMID: 352939929163555)
      Bragg F, Kartsonaki C, Guo Y, Holmes M, Du H, Yu C et al (2022) Circulating metabolites and the development of type 2 diabetes in Chinese adults. Diabetes Care 45(2):477–480. (PMID: 34848488)
      Scarale MG, Mastroianno M, Prehn C, Copetti M, Salvemini L, Adamski J et al (2022) Circulating metabolites associate with and improve the prediction of all-cause mortality in type 2 diabetes. Diabetes 71(6):1363–1370. (PMID: 35358315)
      Wu IW, Tsai TH, Lo CJ, Chou YJ, Yeh CH, Cheng ML et al (2022) Discovery of a biomarker signature that reveals a molecular mechanism underlying diabetic kidney disease via organ cross talk. Diabetes Care 45(6):e102–e104. (PMID: 355465259210869)
      Kammer M, Heinzel A, Willency JA, Duffin KL, Mayer G, Simons K et al (2019) Integrative analysis of prognostic biomarkers derived from multiomics panels helps discrimination of chronic kidney disease trajectories in people with type 2 diabetes. Kidney Int 96(6):1381–1388. (PMID: 31679767)
      Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K et al (2019) Characterization of glycolytic enzymes and pyruvate kinase M2 in type 1 and 2 diabetic nephropathy. Diabetes Care 42(7):1263–1273. (PMID: 310764186609957)
      Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G et al (2014) Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin J Am Soc Nephrol 9(1):37–45. (PMID: 24235289)
      Winther SA, Henriksen P, Vogt JK, Hansen TH, Ahonen L, Suvitaival T et al (2020) Gut microbiota profile and selected plasma metabolites in type 1 diabetes without and with stratification by albuminuria. Diabetologia 63(12):2713–2724. (PMID: 32886190)
      PongracBarlovic D, Harjutsalo V, Sandholm N, Forsblom C, Groop PH, FinnDiane Study G (2020) Sphingomyelin and progression of renal and coronary heart disease in individuals with type 1 diabetes. Diabetologia 63(9):1847–1856.
      Niewczas MA, Mathew AV, Croall S, Byun J, Major M, Sabisetti VS et al (2017) Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care 40(3):383–390. (PMID: 280875765319475)
      Niewczas MA, Sirich TL, Mathew AV, Skupien J, Mohney RP, Warram JH et al (2014) Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int 85(5):1214–1224. (PMID: 244293974072128)
      Mutter S, Valo E, Aittomaki V, Nybo K, Raivonen L, Thorn LM et al (2022) Urinary metabolite profiling and risk of progression of diabetic nephropathy in 2670 individuals with type 1 diabetes. Diabetologia 65(1):140–149. (PMID: 34686904)
      Kwan B, Fuhrer T, Zhang J, Darshi M, Van Espen B, Montemayor D et al (2020) Metabolomic markers of kidney function decline in patients with diabetes: evidence from the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis 76(4):511–520. (PMID: 323870237529642)
      Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R et al (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24(11):1901–1912. (PMID: 239497963810086)
      Xie G, Wang L, Chen T, Zhou K, Zhang Z, Li J et al (2021) A metabolite array technology for precision medicine. Anal Chem 93(14):5709–5717. (PMID: 33797874)
      Shi C, He A, Wu X, Wang L, Zhu X, Jiang L et al (2022) Urinary IL-18 is associated with arterial stiffness in patients with type 2 diabetes. Front Endocrinol 13:956186.
      Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51(6):1173–1182. (PMID: 3806354)
      Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P et al (2022) Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int 102(2):248–260. (PMID: 35661785)
      van der Rijt S, Leemans JC, Florquin S, Houtkooper RH, Tammaro A (2022) Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 18(9):588–603. (PMID: 35798902)
      Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12(12):2032–2045. (PMID: 285226545718284)
      Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Invest 124(6):2333–2340. (PMID: 248927074089448)
      Pichler R, Afkarian M, Dieter BP, Tuttle KR (2017) Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 312(4):F716–F731. (PMID: 27558558)
      Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S et al (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87(1):74–84. (PMID: 25075770)
      Alicic RZ, Johnson EJ, Tuttle KR (2018) Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv Chronic Kidney Dis 25(2):181–191. (PMID: 29580582)
      Tummalapalli L, Nadkarni GN, Coca SG (2016) Biomarkers for predicting outcomes in chronic kidney disease. Curr Opin Nephrol Hypertens 25(6):480–486. (PMID: 276367738369653)
      Parikh CR, Liu C, Mor MK, Palevsky PM, Kaufman JS, Thiessen Philbrook H et al (2020) Kidney biomarkers of injury and repair as predictors of contrast-associated AKI: a sub study of the preserve trial. Am J Kidney Dis 75(2):187–194. (PMID: 31547939)
      Nadkarni GN, Rao V, Ismail-Beigi F, Fonseca VA, Shah SV, Simonson MS et al (2016) Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: the accord trial. Clin J Am Soc Nephrol 11(8):1343–1352. (PMID: 271893184974890)
      Araki S, Haneda M, Koya D, Sugimoto T, Isshiki K, Chin-Kanasaki M et al (2007) Predictive impact of elevated serum level of IL-18 for early renal dysfunction in type 2 diabetes: an observational follow-up study. Diabetologia 50(4):867–873. (PMID: 17225121)
      Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J et al (2005) Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 28(12):2890–2895. (PMID: 16306550)
      Tammaro A, Kers J, Scantlebery AML, Florquin S (2020) Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration. Front Immunol 11:1346. (PMID: 327334507358591)
      Stokman G, Kors L, Bakker PJ, Rampanelli E, Claessen N, Teske GJD et al (2017) NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J Exp Med 214(8):2405–2420. (PMID: 286260715551566)
      Prochnicki T, Latz E (2017) Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab 26(1):71–93. (PMID: 28683296)
      ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al (2023) 11. Chronic kidney disease and risk management: standards of care in diabetes-2023. Diabetes Care 46(Suppl 1):S191–S202. (PMID: 36507634)
      Group DER, de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME et al (2011) Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med 365(25):2366–2376.
      Zoungas S, Arima H, Gerstein HC, Holman RR, Woodward M, Reaven P et al (2017) Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol 5(6):431–437. (PMID: 28365411)
      Papademetriou V, Lovato L, Doumas M, Nylen E, Mottl A, Cohen RM et al (2015) Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney Int 87(3):649–659. (PMID: 25229335)
      Perkovic V, Heerspink HL, Chalmers J, Woodward M, Jun M, Li Q et al (2013) Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int 83(3):517–523. (PMID: 23302714)
      Leehey DJ, Zhang JH, Emanuele NV, Whaley-Connell A, Palevsky PM, Reilly RF et al (2015) BP and renal outcomes in diabetic kidney disease: the veterans affairs nephropathy in diabetes trial. Clin J Am Soc Nephrol 10(12):2159–2169. (PMID: 264822584670761)
      Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A (2015) Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 313(6):603–615. (PMID: 25668264)
      Bangalore S, Fakheri R, Toklu B, Messerli FH (2016) Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ 352:i438. (PMID: 268681374772784)
      ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D et al (2023) 10. Cardiovascular disease and risk management: standards of care in diabetes-2023. Diabetes Care 46(Suppl 1):S158–S190. (PMID: 36507632)
      Sasso FC, Simeon V, Galiero R, Caturano A, De Nicola L, Chiodini P, et al (2022) The number of risk factors not at target is associated with cardiovascular risk in a type 2 diabetic population with albuminuria in primary cardiovascular prevention. Post-hoc analysis of the NID-2 trial. Cardiovasc Diabetol. 21(1): 235.
      Mills KT, Chen J, Yang W, Appel LJ, Kusek JW, Alper A et al (2016) Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 315(20):2200–2210. (PMID: 272186295087595)
      Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Hypertension 71(6):1269–1324. (PMID: 29133354)
      Sasso FC, Carbonara O, Persico M, Iafusco D, Salvatore T, D’Ambrosio R et al (2002) Irbesartan reduces the albumin excretion rate in microalbuminuric type 2 diabetic patients independently of hypertension: a randomized double-blind placebo-controlled crossover study. Diabetes Care 25(11):1909–1913. (PMID: 12401731)
      Tanamas SK, Saulnier PJ, Fufaa GD, Wheelock KM, Weil EJ, Hanson RL et al (2016) Long-term effect of losartan on kidney disease in American Indians with type 2 diabetes: a follow-up analysis of a randomized clinical trial. Diabetes Care 39(11):2004–2010. (PMID: 276125015079606)
      Bhandari S, Mehta S, Khwaja A, Cleland JGF, Ives N, Brettell E et al (2022) Renin-angiotensin system inhibition in advanced chronic kidney disease. N Engl J Med 387(22):2021–2032. (PMID: 36326117)
      de Boer IH, Rossing P (2020) Clinical practice guideline for diabetes management in chronic kidney disease introduction. Kidney Int 98(4):1–115.
      Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM et al (2022) Management of hyperglycemia in type 2 diabetes 2022 a consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care 45(11):2753–2786. (PMID: 36148880)
      Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383(15):1436–1446. (PMID: 32970396)
      Thomas MC, Coughlan MT, Cooper ME (2023) The postprandial actions of GLP-1 receptor agonists: the missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 35(2):253–273. (PMID: 36754019)
      Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P et al (2020) Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383(23):2219–2229. (PMID: 33264825)
      Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF et al (2019) Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393(10184):1937–1947. (PMID: 30995972)
      Mulder S, Heerspink HJL, Darshi M, Kim JJ, Laverman GD, Sharma K et al (2019) Effects of dapagliflozin on urinary metabolites in people with type 2 diabetes. Diabetes Obes Metab 21(11):2422–2428. (PMID: 31264758)
      Mulder S, Hammarstedt A, Nagaraj SB, Nair V, Ju W, Hedberg J et al (2020) A metabolomics-based molecular pathway analysis of how the sodium-glucose co-transporter-2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes. Diabetes Obes Metab 22(7):1157–1166. (PMID: 321158537317707)
      Martin WP, Malmodin D, Pedersen A, Wallace M, Fandriks L, Aboud CM et al (2022) Urinary metabolomic changes accompanying albuminuria remission following gastric bypass surgery for type 2 diabetic kidney disease. Metabolites 12(2):139. (PMID: 351866757612403)
      Mulder S, Perco P, Oxlund C, Mehdi UF, Hankemeier T, Jacobsen IA et al (2020) Baseline urinary metabolites predict albuminuria response to spironolactone in type 2 diabetes. Transl Res 222:17–27. (PMID: 32438071)
    • Grant Information:
      BK20201497 Natural Science Foundation of Jiangsu Province; 82270760 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: Inflammation; Kidney; Metabolite
    • Accession Number:
      8LL210O1U0 (isobutyric acid)
      1BR7X184L5 (isovaleric acid)
      JHU490RVYR (propionic acid)
      0 (Interleukin-18)
      GMW67QNF9C (Leucine)
      0 (Biomarkers)
    • Publication Date:
      Date Created: 20230515 Date Completed: 20230724 Latest Revision: 20230810
    • Publication Date:
      20230810
    • Accession Number:
      PMC10359369
    • Accession Number:
      10.1007/s00592-023-02094-z
    • Accession Number:
      37184672