De novo evolution of macroscopic multicellularity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      While early multicellular lineages necessarily started out as relatively simple groups of cells, little is known about how they became Darwinian entities capable of sustained multicellular evolution 1-3 . Here we investigate this with a multicellularity long-term evolution experiment, selecting for larger group size in the snowflake yeast (Saccharomyces cerevisiae) model system. Given the historical importance of oxygen limitation 4 , our ongoing experiment consists of three metabolic treatments 5 -anaerobic, obligately aerobic and mixotrophic yeast. After 600 rounds of selection, snowflake yeast in the anaerobic treatment group evolved to be macroscopic, becoming around 2 × 10 4 times larger (approximately mm scale) and about 10 4 -fold more biophysically tough, while retaining a clonal multicellular life cycle. This occurred through biophysical adaptation-evolution of increasingly elongate cells that initially reduced the strain of cellular packing and then facilitated branch entanglements that enabled groups of cells to stay together even after many cellular bonds fracture. By contrast, snowflake yeast competing for low oxygen 5 remained microscopic, evolving to be only around sixfold larger, underscoring the critical role of oxygen levels in the evolution of multicellular size. Together, this research provides unique insights into an ongoing evolutionary transition in individuality, showing how simple groups of cells overcome fundamental biophysical limitations through gradual, yet sustained, multicellular evolution.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Nat Protoc. 2007;2(1):31-4. (PMID: 17401334)
      Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1595-600. (PMID: 22307617)
      Nat Commun. 2015 Jan 20;6:6102. (PMID: 25600558)
      Mol Cell. 2006 Feb 3;21(3):319-30. (PMID: 16455487)
      Phys Rev E. 2018 May;97(5-1):050401. (PMID: 29906891)
      Nat Phys. 2018 Mar;14:286-290. (PMID: 31723354)
      PLoS Biol. 2004 Nov;2(11):e329. (PMID: 15514700)
      Evolution. 2004 Sep;58(9):1883-90. (PMID: 15521448)
      Polymers (Basel). 2019 Nov 01;11(11):. (PMID: 31683825)
      J Microsc. 2018 May;270(2):142-149. (PMID: 29194648)
      Curr Opin Microbiol. 2022 Jun;67:102141. (PMID: 35247708)
      Science. 2006 Mar 24;311(5768):1764-7. (PMID: 16556842)
      Trends Plant Sci. 2010 Jun;15(6):353-60. (PMID: 20427223)
      Sci Rep. 2019 Feb 20;9(1):2328. (PMID: 30787483)
      Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16432-7. (PMID: 17911269)
      Am Nat. 2011 Jun;177(6):800-11. (PMID: 21597256)
      Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
      J Evol Biol. 2008 Jan;21(1):104-110. (PMID: 18036158)
      Phys Rev Lett. 2012 Mar 9;108(10):108302. (PMID: 22463461)
      Nat Commun. 2021 May 14;12(1):2838. (PMID: 33990594)
      Elife. 2020 Sep 17;9:. (PMID: 32940598)
      Phys Biol. 2013 Jun;10(3):035001. (PMID: 23735467)
      Macromolecules. 2021 Sep 28;54(18):8563-8574. (PMID: 34602652)
      Biochemistry. 1991 Apr 9;30(14):3576-82. (PMID: 2012815)
      Mol Cell Biol. 2000 Jul;20(14):5235-47. (PMID: 10866679)
      J Exp Biol. 2011 May 1;214(Pt 9):1419-27. (PMID: 21490250)
      Gigascience. 2021 Feb 16;10(2):. (PMID: 33590861)
      Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5. (PMID: 22110037)
      PLoS Biol. 2011 Aug;9(8):e1001122. (PMID: 21857801)
      Science. 2021 Oct 08;374(6564):212-216. (PMID: 34618571)
      Science. 2009 Oct 16;326(5951):408-10. (PMID: 19833964)
      Bioinformatics. 2011 Aug 1;27(15):2156-8. (PMID: 21653522)
      Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1303-1311. (PMID: 31896587)
      Fly (Austin). 2012 Apr-Jun;6(2):80-92. (PMID: 22728672)
      Phys Rev Lett. 2003 Sep 5;91(10):108103. (PMID: 14525511)
      Genes (Basel). 2023 Aug 17;14(8):. (PMID: 37628687)
      Phys Rev Lett. 2012 May 18;108(20):208001. (PMID: 23003190)
      Curr Genet. 2009 Aug;55(4):365-80. (PMID: 19466415)
      Proc Natl Acad Sci U S A. 2021 Feb 9;118(6):. (PMID: 33547237)
      Cell. 2008 Nov 14;135(4):726-37. (PMID: 19013280)
      Brief Bioinform. 2013 Mar;14(2):178-92. (PMID: 22517427)
      Int J Syst Evol Microbiol. 2016 May;66(5):1920-1925. (PMID: 26782356)
    • Grant Information:
      R35 GM138030 United States GM NIGMS NIH HHS; R35 GM138354 United States GM NIGMS NIH HHS
    • Accession Number:
      S88TT14065 (Oxygen)
    • Publication Date:
      Date Created: 20230510 Date Completed: 20230601 Latest Revision: 20240923
    • Publication Date:
      20240923
    • Accession Number:
      PMC10425966
    • Accession Number:
      10.1038/s41586-023-06052-1
    • Accession Number:
      37165189