Glucagon-like peptide-1 analog therapy in rare genetic diseases: monogenic obesity, monogenic diabetes, and spinal muscular atrophy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aim: Implementing genetic analyses have unraveled rare alterations causing early-onset obesity and complications, in whom treatment is challenging. We aimed to report on the effects of adjuvant off-label therapy with liraglutide, glucagon-like peptide-1 analogue (GLP-1a), in rare genetic diagnoses.
      Methods: Case scenarios and review of the literature.
      Results: Case 1: Nine-year-old boy with early-onset severe obesity and nonalcoholic fatty liver disease (NAFLD) due to a homozygous mutation in the MC4R gene deteriorated under lifestyle change and metformin therapy [at 10.5 years: body mass index (BMI) 51.2kg/m 2 , 226% of the 95th percentile, fat percentage (FP) 65% and muscle-to-fat ratio (MFR) z-score of -2.41]. One year of liraglutide treatment halted progressive weight gain [BMI 50.3kg/m 2 , 212% of the 95th percentile, 63.7% FP and MFR z-score of -2.34], with biochemical improvement. Case 2: Twelve-year-old boy with obesity presented with diabetes and progressive NAFLD. Exome analysis revealed two heterozygous mutations compatible with monogenic diabetes (HNF1A) and familial hypercholesterolemia (LDLR). Lifestyle modifications resulted in clinical and laboratory improvement (BMI 87th percentile, 32.8% FP, MFR z-score of -1.63, HbA1c 5.5%) without the expected recovery in liver transaminases. Liraglutide treatment augmented the improvement in weight status (BMI 68th percentile, 22.6% FP, MFR z-score of -1.13) with normalization of liver transaminases. Case 3: Nineteen-year-old male with spinal muscular atrophy type 3 presented with sarcopenic obesity and comorbidities. Treatment strategy included dietary counseling and multiple drug therapies (metformin, anti-hypertensive and statins). Liraglutide therapy led to a gradual recovery of metabolic complications allowing tapering-down other medications.
      Conclusions: Considering the pleiotropic effects of GLP1-a beyond BMI reduction, this treatment modality may serve as a game changer in challenging cases.
      (© 2023. Springer-Verlag Italia S.r.l., part of Springer Nature.)
    • References:
      Jebeile H, Kelly AS, O’Malley G, Baur LA (2022) Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol 10:351–365. https://doi.org/10.1016/S2213-8587(22)00047-X. (PMID: 10.1016/S2213-8587(22)00047-X352481729831747)
      Serra-Juhé C, Martos-Moreno G, Bou de Pieri F et al (2020) Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes (Lond) 44:830–841. https://doi.org/10.1038/S41366-019-0357-5. (PMID: 10.1038/S41366-019-0357-530926952)
      Loos RJF, Yeo GSH (2022) The genetics of obesity: from discovery to biology. Nat Rev Genet 23:120–133. https://doi.org/10.1038/S41576-021-00414-Z. (PMID: 10.1038/S41576-021-00414-Z34556834)
      Thaker VV (2017) Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev 28:379–405. https://doi.org/10.1542/9781581109405-genetic. (PMID: 10.1542/9781581109405-genetic304166426226269)
      Farooqi IS (2021) Monogenic human obesity syndromes. Handb Clin Neurol 181:301–310. https://doi.org/10.1016/B978-0-12-820683-6.00022-1. (PMID: 10.1016/B978-0-12-820683-6.00022-134238466)
      Liu F, Zhu X, Jiang X et al (2022) Transcriptional control by HNF-1: emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis 9:1248. https://doi.org/10.1016/J.GENDIS.2021.06.010. (PMID: 10.1016/J.GENDIS.2021.06.01035873023)
      Brener A, Lebenthal Y, Shtamler A et al (2020) The endocrine manifestations of spinal muscular atrophy, a real-life observational study. Neuromuscul Disord 30:270–276. https://doi.org/10.1016/J.NMD.2020.02.011. (PMID: 10.1016/J.NMD.2020.02.01132273202)
      Smith NK, Hackett TA, Galli A, Flynn CR (2019) GLP-1: molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 128:94. https://doi.org/10.1016/J.NEUINT.2019.04.010. (PMID: 10.1016/J.NEUINT.2019.04.010310028937081944)
      Müller TD, Finan B, Bloom SR et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130. https://doi.org/10.1016/J.MOLMET.2019.09.010. (PMID: 10.1016/J.MOLMET.2019.09.010317671826812410)
      Spencer NJ, Hibberd TJ (2022) GLP-1 appetite control via intestinofugal neurons. Cell Res. https://doi.org/10.1038/S41422-022-00692-0. (PMID: 10.1038/S41422-022-00692-035794368)
      Holst JJ (2019) The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism 96:46–55. https://doi.org/10.1016/J.METABOL.2019.04.014. (PMID: 10.1016/J.METABOL.2019.04.01431029770)
      Gasbjerg LS, Bergmann NC, Stensen S et al (2020) Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides. https://doi.org/10.1016/J.PEPTIDES.2019.170183. (PMID: 10.1016/J.PEPTIDES.2019.17018331809770)
      Ma X, Liu Z, Ilyas I et al (2021) GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 17:2050–2068. https://doi.org/10.7150/IJBS.59965. (PMID: 10.7150/IJBS.59965341314058193264)
      Andrikou E, Tsioufis C, Andrikou I et al (2019) GLP-1 receptor agonists and cardiovascular outcome trials: an update. Hellenic J Cardiol 60:347–351. https://doi.org/10.1016/J.HJC.2018.11.008. (PMID: 10.1016/J.HJC.2018.11.00830528435)
      Basalay MV, Mastitskaya S, Mrochek A et al (2016) Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc Res 112:669–676. https://doi.org/10.1093/CVR/CVW216. (PMID: 10.1093/CVR/CVW216277027635157137)
      Talbot EA, Brown KH, Kirkland KB et al (2010) The safety of immunizing with tetanus-diphtheria-acellular pertussis vaccine (Tdap) less than 2 years following previous tetanus vaccination: experience during a mass vaccination campaign of healthcare personnel during a respiratory illness outbreak. Vaccine 28:8001–8007. https://doi.org/10.1016/j.vaccine.2010.09.034. (PMID: 10.1016/j.vaccine.2010.09.03420875487)
      Hira T, Pinyo J, Hara H (2020) What Is GLP-1 really doing in obesity? Trends Endocrinol Metab 31:71–80. https://doi.org/10.1016/J.TEM.2019.09.003. (PMID: 10.1016/J.TEM.2019.09.00331636017)
      Gilbert MP, Pratley RE (2020) GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2020.00178. (PMID: 10.3389/FENDO.2020.0017833658983)
      Zhao X, Wang M, Wen Z et al (2021) GLP-1 receptor agonists: beyond their pancreatic effects. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2021.721135. (PMID: 10.3389/FENDO.2021.721135352508468649711)
      Aroda VR (2018) A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab 20(Suppl 1):22–33. https://doi.org/10.1111/DOM.13162. (PMID: 10.1111/DOM.1316229364586)
      Kelly AS, Auerbach P, Barrientos-Perez M et al (2020) A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med 382:2117–2128. https://doi.org/10.1056/NEJMOA1916038. (PMID: 10.1056/NEJMOA191603832233338)
      Ryan PM, Seltzer S, Hayward NE et al (2021) Safety and efficacy of glucagon-like peptide-1 receptor agonists in children and adolescents with obesity: a meta-analysis. J Pediatr 236:137-147.e13. https://doi.org/10.1016/J.JPEDS.2021.05.009. (PMID: 10.1016/J.JPEDS.2021.05.00933984333)
      FDA approves weight management drug for patients aged 12 and older | FDA. In: U.S. FOOD DRUG Adm. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-weight-management-drug-patients-aged-12-and-older . Accessed 18 Oct 2022.
      Brener A, Peleg I, Rosenfeld T et al (2021) Beyond body mass index - body composition assessment by bioimpedance in routine endocrine practice. Endocr Pract 27:419–425. https://doi.org/10.1016/J.EPRAC.2020.10.013. (PMID: 10.1016/J.EPRAC.2020.10.01333934752)
      McCarthy HD, Samani-Radia D, Jebb SA, Prentice AM (2014) Skeletal muscle mass reference curves for children and adolescents. Pediatr Obes 9:249–259. https://doi.org/10.1111/J.2047-6310.2013.00168.X. (PMID: 10.1111/J.2047-6310.2013.00168.X23776133)
      Matthews DR, Hosker JP, Rudenski AS et al (1985) (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetol 287(28):412–419. https://doi.org/10.1007/BF00280883. (PMID: 10.1007/BF00280883)
      Daniels SR, Greer FR (2008) Lipid screening and cardiovascular health in childhood. Pediatrics. https://doi.org/10.1542/peds.2008-1349. (PMID: 10.1542/peds.2008-134918596007)
      Nur ZatiIwani AK, Jalaludin MY, Yahya A et al (2022) TG: HDL-C ratio as insulin resistance marker for metabolic syndrome in children with obesity. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2022.852290. (PMID: 10.3389/FENDO.2022.852290)
      Newsome PN, Sasso M, Deeks JJ et al (2020) FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol 5:362–373. https://doi.org/10.1016/S2468-1253(19)30383-8. (PMID: 10.1016/S2468-1253(19)30383-8320278587066580)
      VCV000435828.8 - ClinVar - NCBI. https://www.ncbi.nlm.nih.gov/clinvar/variation/435828/?new_evidence=true . Accessed 8 Nov 2022.
      Grinbaum R, Beglaibter N, Mitrani-Rosenbaum S et al (2022) The Obesogenic and glycemic effect of bariatric surgery in a family with a melanocortin 4 receptor loss-of-function mutation. Metabolites 12:430. https://doi.org/10.3390/METABO12050430. (PMID: 10.3390/METABO12050430356299349143288)
      Maturity-Onset Diabetes of the Young, Type 3 disease: Malacards - Research Articles, Drugs, Genes, Clinical Trials. https://www.malacards.org/card/maturity_onset_diabetes_of_the_young_type_3?showAll=True . Accessed 8 Nov 2022.
      NM_000527.5(LDLR):c.1720C>T (p.Arg574Cys) AND Hypercholesterolemia, familial, 1 - ClinVar - NCBI. https://www.ncbi.nlm.nih.gov/clinvar/RCV000238063/ . Accessed 8 Nov 2022.
      Newsome PN, Buchholtz K, Cusi K et al (2021) A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med 384:1113–1124. https://doi.org/10.1056/NEJMOA2028395. (PMID: 10.1056/NEJMOA202839533185364)
      Ceriotti F, Henny J, Queraltó J et al (2010) Common reference intervals for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) in serum: results from an IFCC multicenter study. Clin Chem Lab Med 48:1593–1601. https://doi.org/10.1515/CCLM.2010.315/MACHINEREADABLECITATION/RIS. (PMID: 10.1515/CCLM.2010.315/MACHINEREADABLECITATION/RIS21034260)
      Kwo PY, Cohen SM, Lim JK (2017) ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol 112:18–35. https://doi.org/10.1038/AJG.2016.517. (PMID: 10.1038/AJG.2016.51727995906)
      Iepsen EW, Have CT, Veedfald S et al (2020) GLP-1 receptor agonist treatment in morbid obesity and type 2 diabetes due to pathogenic homozygous melanocortin-4 receptor mutation: a case report. Cell reports Med. https://doi.org/10.1016/J.XCRM.2020.100006. (PMID: 10.1016/J.XCRM.2020.100006)
      Bae JH, Choi HJ, Cho KIK et al (2020) Glucagon-like peptide-1 receptor agonist differentially affects brain activation in response to visual food cues in lean and obese individuals with type 2 diabetes mellitus. Diabetes Metab J 44:248. https://doi.org/10.4093/DMJ.2019.0018. (PMID: 10.4093/DMJ.2019.001831701698)
      Østoft SH, Bagger JI, Hansen T et al (2014) Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: a double-blind, randomized, crossover trial. Diabetes Care 37:1797–1805. https://doi.org/10.2337/DC13-3007. (PMID: 10.2337/DC13-300724929431)
      Mantovani A, Petracca G, Beatrice G et al (2021) Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites 11:1–13. https://doi.org/10.3390/METABO11020073. (PMID: 10.3390/METABO11020073)
      Wu L, Zhou M, Li T et al (2022) GLP-1 regulates exercise endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochim Biophys acta Mol cell Res. https://doi.org/10.1016/J.BBAMCR.2022.119300. (PMID: 10.1016/J.BBAMCR.2022.11930036521686)
      Yamada S, Ogura Y, Inoue K et al (2022) Effect of GLP-1 receptor agonist, liraglutide, on muscle in spontaneously diabetic torii fatty rats. Mol Cell Endocrinol 539:111472. https://doi.org/10.1016/J.MCE.2021.111472. (PMID: 10.1016/J.MCE.2021.11147234606964)
      Abdulla H, Phillips BE, Wilkinson DJ et al (2020) Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle. Aging Cell 19:e13202. https://doi.org/10.1111/ACEL.13202. (PMID: 10.1111/ACEL.13202327443857511886)
      Gurjar AA, Kushwaha S, Chattopadhyay S et al (2020) Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents. Metabolism 103:154044. https://doi.org/10.1016/J.METABOL.2019.154044. (PMID: 10.1016/J.METABOL.2019.15404431812628)
      Ayan E, DeMirci H (2022) A brief atlas of insulin. Curr Diabetes Rev. https://doi.org/10.2174/1573399819666220610150342. (PMID: 10.2174/1573399819666220610150342)
    • Contributed Indexing:
      Keywords: Childhood obesity; Early-onset severe obesity; Hepatic nuclear factor 1 alpha (HNF1α MODY); MC4R gene mutation; Spinal muscular atrophy (SMA) type 3
    • Accession Number:
      89750-14-1 (Glucagon-Like Peptide 1)
      0 (Glucagon-Like Peptide-1 Receptor)
      0 (Hypoglycemic Agents)
      839I73S42A (Liraglutide)
      9100L32L2N (Metformin)
    • Publication Date:
      Date Created: 20230510 Date Completed: 20230626 Latest Revision: 20230626
    • Publication Date:
      20240628
    • Accession Number:
      10.1007/s00592-023-02109-9
    • Accession Number:
      37160786