Effects of redox modulation on quiescin/sulfhydryl oxidase activity of melanoma cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
    • Publication Information:
      Publication: New York : Springer
      Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
    • Subject Terms:
    • Abstract:
      Secreted quiescin/sulfhydryl oxidase (QSOX) is overexpressed in many tumor cell lines, including melanoma, and is usually associated with a pro-invasive phenotype. Our previous work described that B16-F10 cells enter in a quiescent state as a protective mechanism against damage generated by reactive oxygen species (ROS) during melanogenesis stimulation. Our present results show that QSOX activity was two-fold higher in cells with stimulated melanogenesis when compared to control cells. Considering that glutathione (GSH) is one of the main factor responsible for controlling redox homeostasis in cells, this work also aimed to investigate the relationship between QSOX activity, GSH levels and melanogenesis stimulation in B16-F10 murine melanoma cell line. The redox homeostasis was impaired by treating cells with GSH in excess or depleting its intracellular levels through BSO treatment. Interestingly, GSH-depleted cells without stimulation of melanogenesis kept high levels of viability, suggesting a possible adaptive mechanism of survival even under low GSH levels. They also showed lower extracellular activity of QSOX, and higher QSOX intracellular immunostaining, suggesting that this enzyme was less excreted from cells and corroborating with a diminished extracellular QSOX activity. On the other hand, cells under melanogenesis stimulation showed a lower GSH/GSSG ratio (8:1) in comparison with control (non-stimulated) cells (20:1), indicating a pro-oxidative state after stimulation. This was accompanied by decreased cell viability after GSH-depletion, no alterations in QSOX extracellular activity, but higher QSOX nucleic immunostaining. We suggest that melanogenesis stimulation and redox impairment caused by GSH-depletion enhanced the oxidative stress in these cells, contributing to additional alterations of its metabolic adaptive response.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Chakravarthi S, Jessop CE, Willer M, Stirling CJ, Bulleid NJ (2007) Intracellular catalysis of disulfide bond formation by the human sulfhydryl oxidase, QSOX1. Biochem J 404:403–411. https://doi.org/10.1042/BJ20061510. (PMID: 10.1042/BJ20061510173310721896280)
      Mairet-Coello G, Tury A, Esnard-Feve A, Fellmann D, Risold PY, Griffond B (2004) FAD-linked sulfhydryl oxidase QSOX: topographic, cellular, and subcellular immunolocalization in adult rat central nervous system. J Comp Neurol 473:334–363. https://doi.org/10.1002/cne.20126. (PMID: 10.1002/cne.2012615116395)
      Thorpe C, Hoober KL, Raje S, Glynn NM, Burnside J, Turi GK, Coppock DL (2002) Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes. Arch Biochem Biophys 405:1–12. https://doi.org/10.1016/S0003-9861(02)00337-5. (PMID: 10.1016/S0003-9861(02)00337-512176051)
      Tury A, Mairet-Coello G, Poncet F, Jacquemard C, Risold PY, Fellmann D, Griffond B (2004) QSOX sulfhydryl oxidase in rat adenohypophysis: localization and regulation by estrogens. J Endocrinol 183:353–363. https://doi.org/10.1677/joe.1.05842. (PMID: 10.1677/joe.1.0584215531723)
      Rudolf J, Pringle MA, Bulleid NJ (2013) Proteolytic processing of QSOX1A ensures efficient secretion of a potent disulfide catalyst. Biochem J 454:181–190. https://doi.org/10.1042/BJ20130360. (PMID: 10.1042/BJ2013036023713614)
      Wittke I, Wiedemeyer R, Pillmann A, Savelyeva L, Westermann F, Schwab M (2003) Neuroblastoma-derived sulfhydryl oxidase, a new member of the sulfhydryl oxidase/quiescin6 family, regulates sensitization to interferon γ-induced cell death in human neuroblastoma cells. Cancer Res 63:7742–7752. (PMID: 14633699)
      Amiot C, Musard JF, Hadjiyiassemis M, Jouvenot M, Fellmann D, Risold PY, Adami P (2004) Expression of the secreted FAD-dependent sulfydryl oxidase (QSOX) in the guinea pig central nervous system. Mol Brain Res 125:13–21. https://doi.org/10.1016/j.molbrainres.2004.02.024. (PMID: 10.1016/j.molbrainres.2004.02.02415193418)
      Coppock DL, Kopman C, Scandalis S, Gilleran S (1993) Preferential gene expression in quiescent human lung fibroblasts. Cell Growth Differ 4:483–493. (PMID: 8396966)
      Coppock D, Kopman C, Gudas J, Cina-Poppe DA (2000) Regulation of the quiescence-induced genes: Quiescin Q6, decorin, and ribosomal protein S29. Biochem Biophys Res Commun 269:604–610. https://doi.org/10.1006/bbrc.2000.2324. (PMID: 10.1006/bbrc.2000.232410708601)
      Coppock DL, Thorpe C (2006) Multidomain flavin-dependent sulfhydryl oxidases. Antioxid Redox Signal 8:300–311. https://doi.org/10.1089/ars.2006.8.300. (PMID: 10.1089/ars.2006.8.30016677076)
      Heckler EJ, Rancy PC, Kodali VK, Thorpe C (2008) Generating disulfides with the quiescin-sulfhydryl oxidases. Biochim Biophys Acta—Mol Cell Res 1783:567–577. https://doi.org/10.1016/j.bbamcr.2007.10.002. (PMID: 10.1016/j.bbamcr.2007.10.002)
      Morel C, Adami P, Musard JF, Duval D, Radom J, Jouvenot M (2007) Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. Exp Cell Res 313:3971–3982. https://doi.org/10.1016/j.yexcr.2007.09.003. (PMID: 10.1016/j.yexcr.2007.09.00317927979)
      Katchman BA, Antwi K, Hostetter G, Demeure MJ, Watanabe A, Decker GA, Miller LJ, Von Hoff DD, Lake DF (2011) Quiescin sulfhydryl oxidase 1 promotes invasion of pancreatic tumor cells mediated by matrix metalloproteinases. Mol Cancer Res 9:1621–1631. https://doi.org/10.1158/1541-7786.MCR-11-0018. (PMID: 10.1158/1541-7786.MCR-11-001821989104)
      Katchman BA, Ocal IT, Cunliffe HE, Chang Y-H, Hostetter G, Watanabe A, LoBello J, Lake DF (2013) Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer. Breast Cancer Res. 15:R28. https://doi.org/10.1186/bcr3407. (PMID: 10.1186/bcr3407235369623738157)
      Thorpe C, Coppock DL (2007) Generating disulfides in multicellular organisms: Emerging roles for a new flavoprotein family. J Biol Chem 282:13929–13933. https://doi.org/10.1074/jbc.R600037200. (PMID: 10.1074/jbc.R60003720017353193)
      Steclan CA, Nakao LS (2012) QSOX (quiescina/sulfidril oxidase): Função biológica? Estud Biol 34:149–155. https://doi.org/10.7213/estud.biol.7328. (PMID: 10.7213/estud.biol.7328)
      Lake DF, Faigel DO (2014) The emerging role of qsox1 in cancer. Antioxid Redox Signal 21:485–496. https://doi.org/10.1089/ars.2013.5572. (PMID: 10.1089/ars.2013.5572243591074076994)
      Antwi K, Hostetter G, Demeure MJ, Katchman BA, Decker GA, Ruiz Y, Sielaff TD, Koep LJ, Lake DF (2009) Analysis of the plasma peptidome from pancreas cancer patients connects a peptide in plasma to overexpression of the parent protein in tumors. J Proteome Res 8:4722–4731. https://doi.org/10.1021/pr900414f. (PMID: 10.1021/pr900414f19795908)
      Martin DB, Gifford DR, Wright ME, Keller A, Yi E, Goodlett DR, Aebersold R, Nelson PS (2004) Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Res 64:347–355. https://doi.org/10.1158/0008-5472.CAN-03-2062. (PMID: 10.1158/0008-5472.CAN-03-206214729644)
      Soloviev M, Esteves MP, Amiri F, Crompton MR, Rider CC (2013) Elevated transcription of the gene QSOX1 encoding quiescin Q6 sulfhydryl oxidase 1 in breast cancer. PLoS One. https://doi.org/10.1371/journal.pone.0057327. (PMID: 10.1371/journal.pone.0057327234608393583868)
      Kulasingam V, Diamandis EP (2007) Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol Cell Proteomics 6:1997–2011. https://doi.org/10.1074/mcp.M600465-MCP200. (PMID: 10.1074/mcp.M600465-MCP20017656355)
      Heckler EJ, Alon A, Fass D, Thorpe C (2008) Human quiescin-sulfhydryl oxidase, QSOX1: probing internal redox steps by mutagenesis. Biochemistry 47:4955–4963. https://doi.org/10.1021/bi702522q. (PMID: 10.1021/bi702522q18393449)
      Knutsvik G, Collett K, Arnes J, Akslen LA, Stefansson IM (2016) QSOX1 expression is associated with aggressive tumor features and reduced survival in breast carcinomas. Mod Pathol 29:1485–1491. https://doi.org/10.1038/modpathol.2016.148. (PMID: 10.1038/modpathol.2016.14827562495)
      Hanavan PD, Borges CR, Katchman BA, Faigel DO, Ho TH, Ma CT, Sergienko EA, Meurice N, Petit JL, Lake DF (2015) Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines. Oncotarget 6:18418–18428. https://doi.org/10.18632/oncotarget.4099. (PMID: 10.18632/oncotarget.4099261588994621900)
      Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013. (PMID: 10.1016/j.freeradbiomed.2014.11.01325433365)
      Bak DW, Bechtel TJ, Falco JA, Weerapana E (2019) Cysteine reactivity across the subcellular universe. Curr Opin Chem Biol 48:96–105. https://doi.org/10.1016/j.cbpa.2018.11.002. (PMID: 10.1016/j.cbpa.2018.11.00230508703)
      Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363–383. https://doi.org/10.1038/s41580-020-0230-3. (PMID: 10.1038/s41580-020-0230-332231263)
      Pace NJ, Weerapana E (2013) Diverse functional roles of reactive cysteines. ACS Chem Biol 8:283–296. https://doi.org/10.1021/cb3005269. (PMID: 10.1021/cb300526923163700)
      Clavreul N, Bachschmid MM, Hou X, Shi C, Idrizovic A, Ido Y, Pimentel D, Cohen RA (2006) S-glutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 26:2454–2461. https://doi.org/10.1161/01.ATV.0000242791.28953.4c. (PMID: 10.1161/01.ATV.0000242791.28953.4c16931794)
      Kemmerling U, Muñoz P, Müller M, Sánchez G, Aylwin ML, Klann E, Carrasco MA, Hidalgo C (2007) Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell Calcium 41:491–502. https://doi.org/10.1016/j.ceca.2006.10.001. (PMID: 10.1016/j.ceca.2006.10.00117074386)
      Adachi T, Pimentel DR, Heibeck T, Hou X, Lee YJ, Jiang B, Ido Y, Cohen RA (2004) S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 279:29857–29862. https://doi.org/10.1074/jbc.M313320200. (PMID: 10.1074/jbc.M31332020015123696)
      Fiaschi T, Cozzi G, Raugei G, Formigli L, Ramponi G, Chiarugi P (2006) Redox regulation of β-actin during integrin-mediated cell adhesion. J Biol Chem 281:22983–22991. https://doi.org/10.1074/jbc.M603040200. (PMID: 10.1074/jbc.M60304020016757472)
      Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V (2020) Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 33:101516. https://doi.org/10.1016/j.redox.2020.101516. (PMID: 10.1016/j.redox.2020.101516322492097251249)
      Xiong Y, Uys JD, Tew KD, Townsend DM (2011) S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal 15:233–270. https://doi.org/10.1089/ars.2010.3540. (PMID: 10.1089/ars.2010.3540212353523110090)
      Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34:85–96. https://doi.org/10.1016/j.tibs.2008.11.002. (PMID: 10.1016/j.tibs.2008.11.00219135374)
      Cunha ES, Kawahara R, Kadowaki MK, Amstalden HG, Noleto GR, Cadena SMSC, Winnischofer SMB, Martinez GR (2012) Melanogenesis stimulation in B16–F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis. Exp Cell Res 318:1913–1925. https://doi.org/10.1016/j.yexcr.2012.05.019. (PMID: 10.1016/j.yexcr.2012.05.01922668500)
      Kalegari P, Leme DM, Disner GR, Cestari MM, de Bellan D, Meira WV, Mazepa E, Martinez GR (2022) High melanin content in melanoma cells contributes to enhanced DNA damage after rose bengal photosensitization. Photochem Photobiol 98:1355–1364. https://doi.org/10.1111/php.13632. (PMID: 10.1111/php.1363235398885)
      Meira WV, Heinrich TA, Cadena SMSC, Martinez GR (2017) Melanogenesis inhibits respiration in B16–F10 melanoma cells whereas enhances mitochondrial cell content. Exp Cell Res 350:62–72. https://doi.org/10.1016/j.yexcr.2016.11.006. (PMID: 10.1016/j.yexcr.2016.11.00627864061)
      Reilly TP, Bellevue FH, Woster PM, Svensson CK (1998) Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochem Pharmacol 55:803–810. https://doi.org/10.1016/S0006-2952(97)00547-9. (PMID: 10.1016/S0006-2952(97)00547-99586952)
      Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159:109–113. https://doi.org/10.1016/0003-2697(86)90314-3. (PMID: 10.1016/0003-2697(86)90314-33812988)
      Tipple TE, Rogers LK (2012) Methods for the determination of plasma or tissue glutathione levels. Methods Mol Biol 889:315–324. https://doi.org/10.1007/978-1-61779-867-2_20. (PMID: 10.1007/978-1-61779-867-2_20226696743680121)
      Rahman I, Kode A, Biswas SK (2007) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165. https://doi.org/10.1038/nprot.2006.378. (PMID: 10.1038/nprot.2006.378)
      Giustarini D, Galvagni F, Tesei A, Farolfi A, Zanoni M, Pignatta S, Milzani A, Marone IM, Dalle-Donne I, Nassini R, Rossi R (2015) Glutathione, glutathione disulfide, and S-glutathionylated proteins in cell cultures. Free Radic Biol Med 89:972–981. https://doi.org/10.1016/j.freeradbiomed.2015.10.410. (PMID: 10.1016/j.freeradbiomed.2015.10.41026476010)
      Zanata SM, Luvizon AC, Batista DF, Ikegami CM, Pedrosa FO, Souza EM, Chaves DFS, Caron LF, Pelizzari JV, Laurindo FRM, Nakao LS (2005) High levels of active quiescin Q6 sulfhydryl oxidase (QSOX) are selectively present in fetal serum. Redox Rep 10:319–323. https://doi.org/10.1179/135100005X83699. (PMID: 10.1179/135100005X8369916438804)
      Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P (2019) Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev. https://doi.org/10.1155/2019/3150145. (PMID: 10.1155/2019/3150145319498786948340)
      Otsu K, Sato K, Ikeda Y, Imai H, Nakagawa Y, Ohba Y, Fujii J (2005) An abortive apoptotic pathway induced by singlet oxygen is due to the suppression of caspase activation. Biochem J 389:197–206. https://doi.org/10.1042/BJ20042067. (PMID: 10.1042/BJ20042067157967131184552)
      Anderson CP, Tsai JM, Meek WE, Liu RM, Tang Y, Forman HJ, Reynolds CP (1999) Depletion of glutathione by buthionine sulfoximine is cytotoxic for human neuroblastoma cell lines via apoptosis. Exp Cell Res 246:183–192. https://doi.org/10.1006/excr.1998.4303. (PMID: 10.1006/excr.1998.43039882527)
      Marengo B, De Ciucis C, Verzola D, Pistoia V, Raffaghello L, Patriarca S, Balbis E, Traverso N, Cottalasso D, Pronzato MA, Marinari UM, Domenicotti C (2008) Mechanisms of BSO (L-buthionine-S, R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med 44:474–482. https://doi.org/10.1016/j.freeradbiomed.2007.10.031. (PMID: 10.1016/j.freeradbiomed.2007.10.03117991446)
      Jiang F, Robin AM, Katakowski M, Tong L, Espiritu M, Singh G, Chopp M (2003) Photodynamic therapy with photofrin in combination with Buthionine Sulfoximine (BSO) of human glioma in the nude rat. Lasers Med Sci 18:128–133. https://doi.org/10.1007/s10103-003-0269-3. (PMID: 10.1007/s10103-003-0269-314505195)
      Rocha CRR, Kajitani GS, Quinet A, Fortunato RS, Menck CFM (2016) NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget. 7:48081–48092. https://doi.org/10.18632/oncotarget.10129. (PMID: 10.18632/oncotarget.10129273441725217002)
      Chen Y, Zheng W, Li Y, Zhong J, Ji J, Shen P (2008) Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics. Cancer Sci 99:2019–2027. https://doi.org/10.1111/j.1349-7006.2008.00910.x. (PMID: 10.1111/j.1349-7006.2008.00910.x19016762)
      D’Alessio M, Cerella C, Amici C, Pesce C, Coppola S, Fanelli C, Nicola M, Cristofanon S, Clavarino G, Bergamaschi A, Magrini A, Gualandi G, Ghibelli L (2004) Glutathione depletion up-regulates Bcl-2 in BSO-resistant cells. FASEB J 18:1609–1611. https://doi.org/10.1096/fj.04-1813fje. (PMID: 10.1096/fj.04-1813fje15289449)
      Vahrmeijer AL, Hoetelmans RWM, Mulder GJ, Schutrups J, Van Vlierberghe RLP, Van De Velde CJH, Van Dierendonck JH (2000) Development of resistance to glutathione depletion-induced cell death in CC531 colon carcinoma cells: Association with increased expression of Bcl-2. Biochem Pharmacol 59:1557–1562. https://doi.org/10.1016/S0006-2952(00)00286-0. (PMID: 10.1016/S0006-2952(00)00286-010799652)
      Taira T, Nagasaki A, Tomoyose T, Ichi Miyagi J, Kakazu N, Makino S, Shinjyo T, Taira N, Masuda M, Takasu N (2007) Establishment of a human herpes virus-8-negative malignant effusion lymphoma cell line (STR-428) carrying concurrent translocations of BCL2 and c-MYC genes. Leuk Res 31:1285–1292. https://doi.org/10.1016/j.leukres.2007.01.003. (PMID: 10.1016/j.leukres.2007.01.00317368758)
      Furfaro AL, MacAy JRZ, Marengo B, Nitti M, Parodi A, Fenoglio D, Marinari UM, Pronzato MA, Domenicotti C, Traverso N (2012) Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Radic Biol Med 52:488–496. https://doi.org/10.1016/j.freeradbiomed.2011.11.007. (PMID: 10.1016/j.freeradbiomed.2011.11.00722142473)
      Kodali VK, Thorpe C (2010) Oxidative protein folding and the quiescin-sulfhydryl oxidase family of flavoproteins. Antioxid Redox Signal 13:1217–1230. https://doi.org/10.1089/ars.2010.3098. (PMID: 10.1089/ars.2010.3098201365102959182)
      Bulleid NJ, Ellgaard L (2011) Multiple ways to make disulfides. Trends Biochem Sci 36:485–492. https://doi.org/10.1016/j.tibs.2011.05.004. (PMID: 10.1016/j.tibs.2011.05.00421778060)
      Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069. https://doi.org/10.1016/j.cell.2005.04.011. (PMID: 10.1016/j.cell.2005.04.01115989955)
      Borges BE, Appel MH, Cofré AR, Prado ML, Steclan CA, Esnard F, Zanata SM, Laurindo FRM, Nakao LS (1852) The flavo-oxidase QSOX1 supports vascular smooth muscle cell migration and proliferation: evidence for a role in neointima growth. Biochim Biophys Acta—Mol Basis Dis 2015:1334–1346. https://doi.org/10.1016/j.bbadis.2015.03.002. (PMID: 10.1016/j.bbadis.2015.03.002)
      França KC, Martinez PA, Prado ML, Lo SM, Borges BE, Zanata SM, San Martin A, Nakao LS (2020) Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways. Arch Biochem Biophys 679:108220. https://doi.org/10.1016/j.abb.2019.108220. (PMID: 10.1016/j.abb.2019.10822031812669)
      Mairet-Coello G, Tury A, Fellmann D, Risold PY, Griffond B (2005) Ontogenesis of the sulfhydryl oxidase QSOX expression in rat brain. J Comp Neurol 484:403–417. https://doi.org/10.1002/cne.20411. (PMID: 10.1002/cne.2041115770657)
      Tury A, Mairet-Coello G, Esnard-Fève A, Benayoun B, Risold PY, Griffond B, Fellmann D (2006) Cell-specific localization of the sulphydryl oxidase QSOX in rat peripheral tissues. Cell Tissue Res 323:91–103. https://doi.org/10.1007/s00441-005-0043-x. (PMID: 10.1007/s00441-005-0043-x16160860)
      Ilani T, Alon A, Grossman I, Horowitz B, Kartvelishvily E, Cohen SR, Fass D (2013) A secreted disulfide catalyst controls extracellular matrix composition and function. Science 341:74–76. https://doi.org/10.1126/science.1238279. (PMID: 10.1126/science.123827923704371)
      Moriarty-Craige SE, Jones DP (2004) Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr 24:481–509. https://doi.org/10.1146/annurev.nutr.24.012003.132208. (PMID: 10.1146/annurev.nutr.24.012003.13220815189129)
      Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112. https://doi.org/10.1016/S0076-6879(02)48630-2. (PMID: 10.1016/S0076-6879(02)48630-211885298)
      Portes KF, Ikegami CM, Getz J, Martins AP, de Noronha L, Zischler LF, Klassen G, Camargo AA, Zanata SM, Bevilacqua E, Nakao LS (2008) Tissue distribution of quiescin Q6/sulfhydryl oxidase (QSOX) in developing mouse. J Mol Hist 39:217–225. https://doi.org/10.1007/s10735-007-9156-8. (PMID: 10.1007/s10735-007-9156-8)
      Sephton CF, Zhang D, Lehmann TM, Pennington PR, Scheid MP, Mousseau DD (2009) The nuclear localization of 3’-phosphoinositide-dependent kinase-1 is dependent on its association with the protein tyrosine phosphatase SHP-1. Cell Signal 21(11):1634–1644. https://doi.org/10.1016/j.cellsig.2009.06.010. (PMID: 10.1016/j.cellsig.2009.06.01019591923)
      Korlimarla A, Bhandary L, Prabhu JS, Shankar H, Sankaranarayanan H, Kumar P, Remacle J, Natarajan D, Sridhar TS (2013) Identification of a non-canonical nuclear localization signal (NLS) in BRCA1 that could mediate nuclear localization of splice variants lacking the classical NLS. Cell Mol Biol Lett 18(2):284–296. https://doi.org/10.2478/s11658-013-0088-x. (PMID: 10.2478/s11658-013-0088-x236665966275570)
      Ganig N, Baenke F, Thepkaysone M-L, Lin K, Rao VS, Wong FC, Polster H, Schneider M, Helm D, Pecqueux M, Seifert AM, Seifert L, Weitz J, Rahbari NN, Kahlert C (2021) Proteomic analyses of fibroblast- and serum-derived exosomes identify QSOX1 as a marker for non-invasive detection of colorectal cancer. Cancers 13:1351–1380. https://doi.org/10.3390/cancers130613510. (PMID: 10.3390/cancers130613510338027648002505)
    • Grant Information:
      88887.372486/2019-00 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 422547/2018-3 Conselho Nacional de Desenvolvimento Científico e Tecnológico
    • Contributed Indexing:
      Keywords: Glutathione; Melanogenesis; Melanoma; QSOX; Redox
    • Accession Number:
      GAN16C9B8O (Glutathione)
      EC 1.- (Oxidoreductases)
      0 (Reactive Oxygen Species)
      EC 1.8.3.- (sulfhydryl oxidase)
      EC 1.8.3.2 (QSOX1 protein, mouse)
      EC 1.8.- (Oxidoreductases Acting on Sulfur Group Donors)
    • Publication Date:
      Date Created: 20230427 Date Completed: 20240325 Latest Revision: 20240404
    • Publication Date:
      20240404
    • Accession Number:
      10.1007/s11010-023-04745-9
    • Accession Number:
      37103678