Increased levels of lipid and protein oxidation in rat prefrontal cortex after treatment by lithium, valproic acid, and olanzapine.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0326264 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1912 (Electronic) Linking ISSN: 00281298 NLM ISO Abbreviation: Naunyn Schmiedebergs Arch Pharmacol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer Verlag.
    • Subject Terms:
    • Abstract:
      Oxidative stress is widely accepted to contribute to the pathogenesis of several psychiatric diseases. Many antipsychotic drugs and mood stabilizers act through restoration of the dysregulated oxidative homeostasis in the brain. However, the long-term effect of these drugs per se in terms of their potential to interfere with the oxidative status in the brain remains largely controversial. The present study aimed to investigate the sole effect of three commonly used psychoactive drugs, lithium, valproic acid, and olanzapine, on lipid and protein oxidation status in the prefrontal cortex of healthy rats. A total of 80 adult male albino Wistar rats were used, and groups were treated with saline (control), lithium, valproic acid, or olanzapine daily for 30 days. Following sacrification, right prefrontal cortexes were dissected and homogenized. Lipid peroxidation (LPO) and protein oxidation (AOPP) assays were performed by ELISA. LPO levels were significantly higher in lithium and valproic acid-treated rats by 45% and 40%, respectively. Olanzapine treatment caused a mild 26% increase in LPO levels, but the effect was non-significant. Lithium, valproic acid, and olanzapine treatments significantly increased AOPP levels by 58%, 54%, and 36.5%, respectively. There was a strong positive correlation between the lipid peroxidation and protein oxidation levels. Our results call attention to the need to consider the pro-oxidative capacity of antipsychotic drugs per se and their potential to disturb the oxidative homeostasis in the brain during long-term medication for psychiatric diseases.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Atrooz F, Liu H, Salim S (2019) Stress, psychiatric disorders, molecular targets, and more. Prog Mol Biol Transl Sci 167:77–105. (PMID: 10.1016/bs.pmbts.2019.06.00631601407)
      Bai ZL, Li XS, Chen GY, Du Y, Wei ZX, Chen X, Zheng GE, Deng W, Cheng Y (2018) Serum oxidative stress marker levels in unmedicated and medicated patients with schizophrenia. J Mol Neurosci 66(3):428–436. (PMID: 10.1007/s12031-018-1165-430298298)
      Banerjee U, Dasgupta A, Rout JK, Singh OP (2012) Effects of lithium therapy on Na+-K+-ATPase activity and lipid peroxidation in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 37(1):56–61. (PMID: 10.1016/j.pnpbp.2011.12.00622230647)
      Chaudhary S, Parvez S (2012) An in vitro approach to assess the neurotoxicity of valproic acid-induced oxidative stress in cerebellum and cerebral cortex of young rats. Neuroscience 225:258–268. (PMID: 10.1016/j.neuroscience.2012.08.06022960313)
      Chaudhary S, Parvez S (2018) Valproic acid induced neurotoxicological manifestations and its mitigation by melatonin in rat brain synaptosomes. Arch Med Res 49(7):441–450. (PMID: 10.1016/j.arcmed.2019.01.00430792162)
      Chittiprol S, Venkatasubramanian G, Neelakantachar N, Babu SV, Reddy NA, Shetty KT, Gangadhar BN (2010) Oxidative stress and neopterin abnormalities in schizophrenia: a longitudinal study. J Psychiatr Res 44(5):310–313. (PMID: 10.1016/j.jpsychires.2009.09.00219850302)
      Dakhale G, Khanzode S, Khanzode S, Saoji A, Khobragade L, Turankar A (2004) Oxidative damage and schizophrenia: the potential benefit by atypical antipsychotics. Neuropsychobiology 49(4):205–209. (PMID: 10.1159/00007736815154399)
      da-Rosa DD, Valvassori SS, Steckert AV, Ornell F, Ferreira CL, Lopes-Borges J, Varela RB, Dalpizzol F, Andersen ML, Quevedo J (2012) Effects of lithium and valproate on oxidative stress and behavioral changes induced by administration of m-AMPH. Psychiatry Res 198(3):521–526. (PMID: 10.1016/j.psychres.2012.01.01922429481)
      de Sousa RT, Zarate CA Jr, Zanetti MV, Costa AC, Talib LL, Gattaz WF, Machado-Vieira R (2014) Oxidative stress in early stage Bipolar Disorder and the association with response to lithium. J Psychiatr Res 50:36–41. (PMID: 10.1016/j.jpsychires.2013.11.01124332923)
      Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP (2021) Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev 2021:8881770. (PMID: 10.1155/2021/8881770335523877847339)
      Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31(5):326–332. (PMID: 169517351557682)
      Hamza RZ, El-Shenawy NS (2017) The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate. Hum Exp Toxicol 36(11):1212–1221. (PMID: 10.1177/096032711769563428988495)
      Hussein AM, Awadalla A, Abbas KM, Sakr HF, Elghaba R, Othman G, Mokhtar N, Helal GM (2021) Chronic valproic acid administration enhances oxidative stress, upregulates IL6 and downregulates Nrf2, Glut1 and Glut4 in rat’s liver and brain. NeuroReport 32(10):840–850. (PMID: 10.1097/WNR.000000000000166334050116)
      Joshi DK, Chauhan DS, Pathak AK, Mishra S, Choudhary M, Singh VP, Tripathi S (2013) Lithium potentiate oxidative burden and reduced antioxidant status in different rat organs system. Int J Toxicol Pharmacol Res 5(1):9–14.
      Kato T (2019) Current understanding of bipolar disorder: toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 73(9):526–540. (PMID: 10.1111/pcn.1285231021488)
      Khairova R, Pawar R, Salvadore G, Juruena MF, de Sousa RT, Soeiro-de-Souza MG, Salvador M, Zarate CA, Gattaz WF, Machado-Vieira R (2012) Effects of lithium on oxidative stress parameters in healthy subjects. Mol Med Rep 5(3):680–682. (PMID: 22200861)
      Kriisa K, Haring L, Vasar E, Koido K, Janno S, Vasar V, Zilmer K, Zilmer M (2016) Antipsychotic treatment reduces indices of oxidative stress in first-episode psychosis patients. Oxid Med Cell Longev 2016:9616593. (PMID: 10.1155/2016/9616593275288894978850)
      Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, Ruther E, Emrich HM, Schneider U, Bleich S (2005) Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatry Clin Neurosci 17(2):227–231. (PMID: 10.1176/jnp.17.2.22715939978)
      Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V Jr, da Silva Vargas R, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421(1):33–36. (PMID: 10.1016/j.neulet.2007.05.01617548157)
      Martins MR, Petronilho FC, Gomes KM, Dal-Pizzol F, Streck EL, Quevedo J (2008) Antipsychotic-induced oxidative stress in rat brain. Neurotox Res 13(1):63–69. (PMID: 10.1007/BF0303336818367441)
      Mezni A, Aoua H, Limam F, Aouani E (2017) Neuroprotective effect of grape seed and skin extract on lithium-induced oxidative stress in healthy rat brain. Neurochem J 11(1):85–94. (PMID: 10.1134/S1819712417010093)
      Mishra D, Flora SJ (2008) Differential oxidative stress and DNA damage in rat brain regions and blood following chronic arsenic exposure. Toxicol Ind Health 24(4):247–256. (PMID: 10.1177/074823370809335519022878)
      Motaghinejad M, Seyedjavadein Z, Motevalian M, Asadi M (2016) The neuroprotective effect of lithium against high dose methylphenidate: possible role of BDNF. Neurotoxicology 56:40–54. (PMID: 10.1016/j.neuro.2016.06.01027343358)
      Ochoa ELM (2022) Lithium as a neuroprotective agent for bipolar disorder: an overview. Cell Mol Neurobiol 42(1):85–97. (PMID: 10.1007/s10571-021-01129-934357564)
      Padurariu M, Ciobica A, Dobrin I, Stefanescu C (2010) Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 479(3):317–320. (PMID: 10.1016/j.neulet.2010.05.08820561936)
      Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37(1):43–51. (PMID: 10.1016/S0022-3956(02)00048-112482469)
      Pillai A, Parikh V, Terry AV Jr, Mahadik SP (2007) Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 41(5):372–386. (PMID: 10.1016/j.jpsychires.2006.01.01116564057)
      Polydoro M, Schroder N, Lima MN, Caldana F, Laranja DC, Bromberg E, Roesler R, Quevedo J, Moreira JC, Dal-Pizzol F (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 78(4):751–756. (PMID: 10.1016/j.pbb.2004.05.01815301931)
      Romoli M, Mazzocchetti P, D’Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C (2019) Valproic acid and epilepsy: from molecular mechanisms to clinical evidences. Curr Neuropharmacol 17(10):926–946. (PMID: 10.2174/1570159X17666181227165722305922527052829)
      Rossetti AC, Paladini MS, Riva MA, Molteni R (2020) Oxidation-reduction mechanisms in psychiatric disorders: a novel target for pharmacological intervention. Pharmacol Ther 210:107520. (PMID: 10.1016/j.pharmthera.2020.10752032165136)
      Salimi A, Alyan N, Akbari N, Jamali Z, Pourahmad J (2022) Selenium and L-carnitine protects from valproic acid-Induced oxidative stress and mitochondrial damages in rat cortical neurons. Drug Chem Toxicol 45(3):1150–1157. (PMID: 10.1080/01480545.2020.181025932885679)
      Sarangi SC, Kakkar AK, Kumar R, Gupta YK (2016) Effect of lamotrigine, levetiracetam & topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in rats. Indian J Med Res 144(1):104–111. (PMID: 10.4103/0971-5916.193296278343335116881)
      Saudemont G, Prod’Homme C, Da Silva A, Villet S, Reich M, Penel N, Gamblin V (2020) The use of olanzapine as an antiemetic in palliative medicine: a systematic review of the literature. BMC Palliat Care 19(1):56. (PMID: 10.1186/s12904-020-00559-4323214887178955)
      Sobaniec W, Solowiej E, Kulak W, Bockowski L, Smigielska-Kuzia J, Artemowicz B (2006) Evaluation of the influence of antiepileptic therapy on antioxidant enzyme activity and lipid peroxidation in erythrocytes of children with epilepsy. J Child Neurol 21(7):558–562. (PMID: 10.1177/0883073806021007030116970843)
      Victoriano M, de Beaurepaire R, Naour N, Guerre-Millo M, Quignard-Boulange A, Huneau JF, Mathe V, Tome D, Hermier D (2010) Olanzapine-induced accumulation of adipose tissue is associated with an inflammatory state. Brain Res 1350:167–175. (PMID: 10.1016/j.brainres.2010.05.06020570665)
      Wasik A, Bialon M, Zarnowska M, Antkiewicz-Michaluk L (2019) Comparison of the effects of 1MeTIQ and olanzapine on performance in the elevated plus maze test and monoamine metabolism in the brain after ketamine treatment. Pharmacol Biochem Behav 181:17–27. (PMID: 10.1016/j.pbb.2019.04.00230965047)
      Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, Zhou DF (2006) Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81(2–3):291–300. (PMID: 10.1016/j.schres.2005.10.01116309894)
    • Contributed Indexing:
      Keywords: Lithium; Olanzapine; Oxidative stress; Rat brain; Valproic acid
    • Accession Number:
      614OI1Z5WI (Valproic Acid)
      N7U69T4SZR (Olanzapine)
      9FN79X2M3F (Lithium)
      0 (Antipsychotic Agents)
      0 (Advanced Oxidation Protein Products)
      12794-10-4 (Benzodiazepines)
    • Publication Date:
      Date Created: 20230424 Date Completed: 20230913 Latest Revision: 20230922
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s00210-023-02494-6
    • Accession Number:
      37093250