Menu
×
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Qian M;Qian M; Ismail BB; Ismail BB; Ismail BB; He Q; He Q; Zhang X; Zhang X; Yang Z; Yang Z; Ding T; Ding T; Ding T; Ding T; Ye X; Ye X; Ye X; Ye X; Liu D; Liu D; Liu D; Liu D; Guo M; Guo M; Guo M; Guo M
- Source:
Comprehensive reviews in food science and food safety [Compr Rev Food Sci Food Saf] 2023 Jul; Vol. 22 (4), pp. 2523-2590. Date of Electronic Publication: 2023 Apr 17.- Publication Type:
Review; Journal Article; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Institute of Food Technologists Country of Publication: United States NLM ID: 101305205 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1541-4337 (Electronic) Linking ISSN: 15414337 NLM ISO Abbreviation: Compr Rev Food Sci Food Saf Subsets: MEDLINE
- Publication Information: Original Publication: Chicago, Ill. : Institute of Food Technologists
- Subject Terms:
- Abstract: Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
(© 2023 Institute of Food Technologists®.) - References: Aboushanab, S. A., Khedr, S. M., Gette, I. F., Danilova, I. G., Kolberg, N. A., Ravishankar, G. A., Ambati, R. R., & Kovaleva, E. G. (2023). Isoflavones derived from plant raw materials: Bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Critical Reviews in Food Science and Nutrition, 63(2), 261-287. https://doi.org/10.1080/10408398.2021.1946006.
Ahmad, Z., Hassan, S. S., & Azim, S. (2017). A therapeutic connection between dietary phytochemicals and ATP synthase. Current Medicinal Chemistry, 24(35), 3894-3906. https://doi.org/10.2174/0929867324666170823125330.
Albuquerque, B. R., Heleno, S. A., Oliveira, M., Barros, L., & Ferreira, I. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & Function, 12(1), 14-29. https://doi.org/10.1039/d0fo02324h.
Alexander, M. K., Miu, A., Oh, A., Reichelt, M., Ho, H., Chalouni, C., Labadie, S., Wang, L., Liang, J., Nickerson, N. N., Hu, H., Yu, L., Du, M., Yan, D., Park, S., Kim, J., Xu, M., Sellers, B. D., Purkey, H. E., … Nishiyama, M. (2018). Disrupting Gram-negative bacterial outer membrane biosynthesis through inhibition of the lipopolysaccharide transporter MsbA. Antimicrobial Agents and Chemotherapy, 62(11), https://doi.org/10.1128/AAC.01142-18.
Allison, B. J., Allenby, M. C., Bryant, S. S., Min, J. E., Hieromnimon, M., & Joyner, P. M. (2016). Antibacterial activity of fractions from three Chumash medicinal plant extracts and in vitro inhibition of the enzyme enoyl reductase by the flavonoid jaceosidin. Natural Product Research, 31(6), 707-712. https://doi.org/10.1080/14786419.2016.1217201.
AlMatar, M., Albarri, O., Makky, E. A., & Koksal, F. (2021). Efflux pump inhibitors: New updates. Pharmacological Reports, 73(1), 1-16. https://doi.org/10.1007/s43440-020-00160-9.
Andrade, M., Malheiro, J., Borges, F., Saavedra, M. J., & Simões, M. (2020). The potential of phytochemical products in biofilm control. In Recent trends in biofilm science and technology (pp. 273-293), Academic Press.
Arip, M., Selvaraja, M., R, M., Tan, L. F., Leong, M. Y., Tan, P. L., Yap, V. L., Chinnapan, S., Tat, N. C., Abdullah, M., K, D., & Jubair, N. (2022). Review on plant-based management in combating antimicrobial resistance - Mechanistic perspective. Frontiers in Pharmacology, 13, 879495. https://doi.org/10.3389/fphar.2022.879495.
Auranwiwat, C., Trisuwan, K., Saiai, A., Pyne, S. G., & Ritthiwigrom, T. (2014). Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa. Fitoterapia, 98, 179-183. https://doi.org/10.1016/j.fitote.2014.08.003.
Aygul, A. (2015). The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance. Mikrobiyoloji Bulteni, 49(2), 278-291. https://doi.org/10.5578/mb.8964.
Bag, A., & Chattopadhyay, R. R. (2014). Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Natural Product Research, 28(16), 1280-1283. https://doi.org/10.1080/14786419.2014.895729.
Baggett, S., Mazzola, E. P., & Kennelly, E. J. (2005). The benzophenones: Isolation, structure, elucidation and biological activities. In A. UrRahman (Ed.), Bioactive natural products (Vol. 32, pp. 721-771), Elsevier B.V.
Baky, M. H., Kamal, A. M., Haggag, E. G., & Elgindi, M. R. (2022). Flavonoids from Manilkara hexandra and antimicrobial and antioxidant activities. Biochemical Systematics and Ecology, 100(2022), 104375. https://doi.org/10.1016/j.bse.2021.104375.
Barbieri, M., & Heard, C. M. (2019). Isolation of punicalagin from Punica granatum rind extract using mass-directed semi-preparative ESI-AP single quadrupole LC-MS. Journal of Pharmaceutical and Biomedical Analysis, 166, 90-94. https://doi.org/10.1016/j.jpba.2018.12.033.
Basilea, A., Sorbo, S., Giordano, S., Ricciardi, L., Ferrara, S., Montesano, D., Cobianchi, R. C., Vuotto, M. L., & Ferrara, L. (2000). Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia, 71, 110-116.
Bhattacharya, A., Jindal, B., Singh, P., Datta, A., & Panda, D. (2013). Plumbagin inhibits cytokinesis in Bacillus subtilis by inhibiting FtsZ assembly-a mechanistic study of its antibacterial activity. FEBS Journal, 280(18), 4585-4599. https://doi.org/10.1111/febs.12429.
Biharee, A., Sharma, A., Kumar, A., & Jaitak, V. (2020). Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 146(104720), 1-22. https://doi.org/10.1016/j.fitote.2020.104720.
Biloa Messi, B., Ho, R., Meli Lannang, A., Cressend, D., Perron, K., Nkengfack, A. E., Carrupt, P. A., Hostettmann, K., & Cuendet, M. (2014). Isolation and biological activity of compounds from Garcinia preussii. Pharmaceutical Biology, 52(6), 706-711. https://doi.org/10.3109/13880209.2013.865241.
Bisson-Filho, A. W., Hsu, Y.-P., Squyres, G. R., Kuru, E., Wu, F., Jukes, C., Sun, Y., Dekker, C., Holden, S., VanNieuwenhze, M. S., Brun, Y. V., & Garner, E. C. (2017). Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science, 355(6326), 739-743. https://doi.org/10.1126/science.aak9973.
Boonsombat, J., Mahidol, C., Chawengrum, P., Reuk-Ngam, N., Chimnoi, N., Techasakul, S., Ruchirawat, S., & Thongnest, S. (2017). Roscotanes and roscoranes: Oxygenated abietane and pimarane diterpenoids from Kaempferia roscoeana. Phytochemistry, 143, 36-44. https://doi.org/10.1016/j.phytochem.2017.07.008.
Bouyahya, A., Chamkhi, I., Balahbib, A., Rebezov, M., Shariati, M. A., Wilairatana, P., Mubarak, M. S., Benali, T., & El Omari, N. (2022). Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: A comprehensive review. Molecules, 27(5), 1484. https://doi.org/10.3390/molecules27051484.
Brackman, G., & Coenye, T. (2014). Quorum sensing inhibitors as anti-biofilm agents. Current Pharmaceutical Design, 21(1), 5-11. https://doi.org/10.2174/1381612820666140905114627.
Cai, Y., Zou, G., Xi, M., Hou, Y., Shen, H., Ao, J., Li, M., Wang, J., & Luo, A. (2022). Juglone inhibits Listeria monocytogenes ATCC 19115 by targeting cell membrane and protein. Foods, 11(17), 1-15. https://doi.org/10.3390/foods11172558.
Caleja, C., Ribeiro, A., Barreiro, M. F., & Ferreira, I. (2017). Phenolic compounds as nutraceuticals or functional food ingredients. Current Pharmaceutical Design, 23(19), 2787-2806. https://doi.org/10.2174/1381612822666161227153906.
Chai, T. T., Tan, Y. N., Ee, K. Y., Xiao, J., & Wong, F. C. (2019). Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides. Critical Reviews in Food Science and Nutrition, 59, S162-S177. https://doi.org/10.1080/10408398.2018.1561418.
Cheng, G. G., Li, D., Hou, B., Li, X. N., Liu, L., Chen, Y. Y., Lunga, P. K., Khan, A., Liu, Y. P., Zuo, Z. L., & Luo, X. D. (2016). Melokhanines A-J, bioactive monoterpenoid indole alkaloids with diverse skeletons from Melodinus khasianus. Journal of Natural Products, 79(9), 2158-2166. https://doi.org/10.1021/acs.jnatprod.6b00011.
Chiou, W. F., Ko, H. C., & Wei, B. L. (2011). Evodia rutaecarpa and three major alkaloids abrogate influenza A virus (H1N1)-induced chemokines production and cell migration. Evidence-Based Complementary and Alternative Medicine, 2011, 750513, https://doi.org/10.1093/ecam/nep238.
Choi, U., & Lee, C. R. (2019). Antimicrobial agents that inhibit the outer membrane assembly machines of gram-negative bacteria. Journal of Microbiology and Biotechnology, 29(1), 1-10. https://doi.org/10.4014/jmb.1804.03051.
Costa, E. V., Cruz, P. E., Lourenco, C. C., Souza Moraes, V. R., Lima Nogueira, P. C., & Salvador, M. J. (2013). Antioxidant and antimicrobial activities of aporphinoids and other alkaloids from the bark of Annona salzmannii A. DC. (Annonaceae). Natural Product Research, 27(11), 1002-1006. https://doi.org/10.1080/14786419.2012.688044.
Costa, E. V., Pinheiro, M. L. c. B., Barison, A., Campos, F. R., Salvador, M. J., Maia, B. H. L. N. S., Cabral, E. C., & Eberlin, M. N. (2010). Alkaloids from the bark of Guatteria hispida and their evaluation as antioxidant and antimicrobial agents. Journal of Natural Products, 1180-1183.
Dalbey, R. E., Wang, P., & Kuhn, A. (2011). Assembly of bacterial inner membrane proteins. Annual Review of Biochemistry, 80(80), 161-187. https://doi.org/10.1146/annurev-biochem-060409-092524.
Daneshmand, F., Zare-Zardini, H., & Ebrahimi, L. (2013). Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Natural Product Research, 27(24), 2292-2296. https://doi.org/10.1080/14786419.2013.827192.
Davidson, P. M., Critzer, F. J., & Taylor, T. M. (2013). Naturally occurring antimicrobials for minimally processed foods. Annual Review of Food Science and Technology, 4, 163-190. https://doi.org/10.1146/annurev-food-030212-182535.
Deachathai, S., Mahabusarakam, W., Phongpaichit, S., & Taylor, W. C. (2005). Phenolic compounds from the fruit of Garcinia dulcis. Phytochemistry, 66(19), 2368-2375. https://doi.org/10.1016/j.phytochem.2005.06.025.
Deachathai, S., Mahabusarakam, W., Phongpaichit, S., Taylor, W. C., Zhang, Y. J., & Yang, C. R. (2006). Phenolic compounds from the flowers of Garcinia dulcis. Phytochemistry, 67(5), 464-469. https://doi.org/10.1016/j.phytochem.2005.10.016.
Deachathai, S., Phongpaichit, S., & Mahabusarakam, W. (2008). Phenolic compounds from the seeds of Garcinia dulcis. Natural Product Research, 22(15), 1327-1332. https://doi.org/10.1080/14786410601130406.
Delves-Broughton, J. (2012). Natural antimicrobials as additives and ingredients for the preservation of foods and beverages. In D. Baines & R. Seal (Eds.), Woodhead publishing series in food science technology and nutrition. https://doi.org/10.1016/B978-1-84569-811-9.50006-2.
Dembitsky, V. M. (2005). Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids, 40, 1081-1105.
Deryabin, D., Galadzhieva, A., Kosyan, D., & Duskaev, G. (2019). Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: Modes of action. International Journal of Molecular Sciences, 20, 1-22. https://doi.org/10.3390/ijms20225588.
Devkota, L., Montet, D., & Anal, A. K. (2018). Regulatory and legislative issues for food waste utilization. In A. K. Anal (Ed.), Food processing by-products and their utilization (pp. 535-548). John Wiley & Sons Ltd.
Dhayakaran, R. P. A., Neethirajan, S., Xue, J., & Shi, J. (2015). Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT - Food Science and Technology, 63(2), 859-865. https://doi.org/10.1016/j.lwt.2015.04.053.
Dighe, S. N., & Collet, T. A. (2020). Recent advances in DNA gyrase-targeted antimicrobial agents. European Journal of Medicinal Chemistry, 199(112326), 1-14. https://doi.org/10.1016/j.ejmech.2020.112326.
Dominguez-Perles, R., Moreno, D. A., & Garcia-Viguera, C. (2018). Waking up from four decades' long dream of valorizing agro-food byproducts: Toward practical applications of the gained knowledge. Journal of Agricultural and Food Chemistry, 66(12), 3069-3073. https://doi.org/10.1021/acs.jafc.7b05848.
Dong, B., Yu, C., Lin, Y., Zhou, G., Sun, C., Wang, J., & Wu, T. (2022). Antimicrobial property of Pichia pastoris-derived natto peptide against foodborne bacteria and its preservative potential to maintain pork quality during refrigerated storage. Food Science & Nutrition, 10(3), 914-925. https://doi.org/10.1002/fsn3.2722.
Doyle, A. A., & Stephens, J. C. (2019). A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia, 139, 104405. https://doi.org/10.1016/j.fitote.2019.104405.
Du, G. F., Le, Y. J., Sun, X., Yang, X. Y., & He, Q. Y. (2020). Proteomic investigation into the action mechanism of berberine against Streptococcus pyogenes. Journal of Proteomics, 215(January), 103666. https://doi.org/10.1016/j.jprot.2020.103666.
Du, W., Zhou, M., Liu, Z., Chen, Y., & Li, R. (2018). Inhibition effects of low concentrations of epigallocatechin gallate on the biofilm formation and hemolytic activity of Listeria monocytogenes. Food Control, 85, 119-126. https://doi.org/10.1016/j.foodcont.2017.09.011.
Du, Y., Jiang, Y., Zhu, X., Xiong, H., Shi, S., Hu, J., Peng, H., Zhou, Q., & Sun, W. (2012). Physicochemical and functional properties of the protein isolate and major fractions prepared from Akebia trifoliata var. australis seed. Food Chemistry, 133(3), 923-929. https://doi.org/10.1016/j.foodchem.2012.02.005.
Duarte, A., Alves, A. C., Ferreira, S., Silva, F., & Domingues, F. C. (2015). Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Research International, 77, 244-250. https://doi.org/10.1016/j.foodres.2015.05.047.
Duggirala, S., Nankar, R. P., Rajendran, S., & Doble, M. (2014). Phytochemicals as inhibitors of bacterial cell division protein FtsZ: Coumarins are promising candidates. Applied Biochemistry and Biotechnology, 174(1), 283-296. https://doi.org/10.1007/s12010-014-1056-2.
Dzotam, J. K., Simo, I. K., Bitchagno, G., Celik, I., Sandjo, L. P., Tane, P., & Kuete, V. (2018). In vitro antibacterial and antibiotic modifying activity of crude extract, fractions and 3′,4′,7-trihydroxyflavone from Myristica fragrans Houtt against MDR Gram-negative enteric bacteria. BMC Complementary and Alternative Medicine, 18(1), 1-9. https://doi.org/10.1186/s12906-018-2084-1.
Eksi, G., Kurbanoglu, S., & Erdem, S. A. (2020). Analysis of diterpenes and diterpenoids. In A. S. Silva, S. F. Nabavi, M. Saeedi, & S. M. Nabavi (Eds.), Recent advances in natural products analysis (pp. 313-345). Elsevier.
Eloff, J. N. (2021). A proposal towards a rational classification of the antimicrobial activity of acetone tree leaf extracts in a search for new antimicrobials. Planta Medica, 87, 836-840. https://doi.org/10.1055/a-1482-1410.
Farhadi, F., Khameneh, B., Iranshahi, M., & Iranshahy, M. (2019). Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytotherapy Research, 33(1), 13-40. https://doi.org/10.1002/ptr.6208.
Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6). https://doi.org/10.3390/molecules24061056.
FDA. (2021). Microbiological-considerations-for-antimicrobial-agents-used-in-food-applications-guidance-for-industry. Retrieved from: https://www.fda.gov/media/83078/download.
Geethalakshmi, R., Sundaramurthi, J. C., & Sarada, D. V. L. (2018). Antibacterial activity of flavonoid isolated from Trianthema decandra against Pseudomonas aeruginosa and molecular docking study of FabZ. Microbial Pathogenesis, 121, 87-92. https://doi.org/10.1016/j.micpath.2018.05.016.
Gerusz, V. (2010). Recent advances in the inhibition of bacterial fatty acid biosynthesis. In J. Macor (Ed.), Annual reports in medicinal chemistry (pp. 295-311). Elsevier Inc.
Giweli, A., Dzamic, A. M., Sokovic, M., Ristic, M. S., & Marin, P. D. (2012). Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules, 17(5), 4836-4850. https://doi.org/10.3390/molecules17054836.
Gomez-Garcia, R., Campos, D. A., Aguilar, C. N., Madureira, A. R., & Pintado, M. (2021). Valorisation of food agro-industrial by-products: From the past to the present and perspectives. Journal of Environmental Management, 299(113571), 1-10. https://doi.org/10.1016/j.jenvman.2021.113571.
Górniak, I., Bartoszewski, R., & Króliczewski, J. (2018). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241-272. https://doi.org/10.1007/s11101-018-9591-z.
Gosset-Erard, C., Zhao, M., Lordel-Madeleine, S., & Ennahar, S. (2021). Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chemistry, 352(129396), 1-7. https://doi.org/10.1016/j.foodchem.2021.129396.
Guil-Guerrero, J. L., Ramos, L., Moreno, C., Zúñiga-Paredes, J. C., Carlosama-Yepez, M., & Ruales, P. (2016). Antimicrobial activity of plant-food by-products: A review focusing on the tropics. Livestock Science, 189, 32-49. https://doi.org/10.1016/j.livsci.2016.04.021.
Gunter, N. V., Teh, S. S., Lim, Y. M., & Mah, S. H. (2020). Natural xanthones and skin inflammatory diseases: Multitargeting mechanisms of action and potential application. Frontiers in Pharmacology, 11, 594202. https://doi.org/10.3389/fphar.2020.594202.
Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047.
Hamed, I., Jakobsen, A. N., & Lerfall, J. (2021). Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 198-226. https://doi.org/10.1111/1541-4337.12870.
Hamid, H. A., Ramli, A. N., & Yusoff, M. M. (2017). Indole alkaloids from plants as potential leads for antidepressant drugs: A review. Frontiers in Pharmacology, 8, 1-7. https://doi.org/10.3389/fphar.2017.00096.
Hassan, M. F., Qutb, A. M., & Dong, W. (2021). Prediction and activity of a cationic alpha-helix antimicrobial peptide ZM-804 from maize. International Journal of Molecular Sciences, 22(5), 1-23. https://doi.org/10.3390/ijms22052643.
He, Q., Zhang, L., Yang, Z., Ding, T., Ye, X., Liu, D., & Guo, M. (2022). Antibacterial mechanisms of thyme essential oil nanoemulsions against Escherichia coli O157:H7 and Staphylococcus aureus: Alterations in membrane compositions and characteristics. Innovative Food Science & Emerging Technologies, 75(102902), 1-10. https://doi.org/10.1016/j.ifset.2021.102902.
Heath, R. J., & Rock, C. O. (1996). Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. The Journal of Biological Chemistry, 271(44), 27795-27801. https://doi.org/10.1074/jbc.271.44.27795.
Helander, I. M., Alakomi, H.-L., Latva-Kala, K. s., Mattila-Sandholm, T., Pol, I., Smid, E. J., Gorris, L. G. M., & Wright, A. v. (1998). Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry, 46, 3590-3595.
Heymich, M. L., Friedlein, U., Trollmann, M., Schwaiger, K., Bockmann, R. A., & Pischetsrieder, M. (2021). Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chemistry, 347, 128917. https://doi.org/10.1016/j.foodchem.2020.128917.
Heymich, M. L., Nissl, L., Hahn, D., Noll, M., & Pischetsrieder, M. (2021). Antioxidative, antifungal and additive activity of the antimicrobial peptides Leg1 and Leg2 from chickpea. Foods, 10(3), 1-16. https://doi.org/10.3390/foods10030585.
Holasova, K., Krizkovska, B., Hoang, L., Dobiasova, S., Lipov, J., Macek, T., Kren, V., Valentova, K., Ruml, T., & Viktorova, J. (2022). Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomedicine & Pharmacotherapy, 149, 112806. https://doi.org/10.1016/j.biopha.2022.112806.
Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, https://doi.org/10.3389/fmicb.2020.582779.
Huang, W., Wang, Y., Tian, W., Cui, X., Tu, P., Li, J., & Shi, S. (2022). Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics, 11(1380). https://doi.org/10.3390/antibiotics11101380.
Hudson, M. A., & Locklessa, S. W. (2022). Elucidating the mechanisms of action of antimicrobial agents. mBio, 13(3), 1-9. https://doi.org/10.1128/mbio.02240-21.
Hurley, K. A., Santos, T. M. A., Nepomuceno, G. M., Huynh, V., Shaw, J. T., & Weibel, D. B. (2016). Targeting the bacterial division protein FtsZ. Journal of Medicinal Chemistry, 59(15), 6975-6998. https://doi.org/10.1021/acs.jmedchem.5b01098.
Hwang, D., & Lim, Y. H. (2015). Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Science Reports, 5, 10029. https://doi.org/10.1038/srep10029.
Ismail, B. B., Liu, D., Pu, Y., He, Q., & Guo, M. (2021). High-intensity ultrasound processing of baobab fruit pulp: Effect on quality, bioactive compounds, and inhibitory potential on the activity of α-amylase and α-glucosidase. Food Chemistry, 361, 130144. https://doi.org/10.1016/j.foodchem.2021.130144.
Ismail, B. B., Pu, Y., Guo, M., Ma, X., & Liu, D. (2019). LC-MS/QTOF identification of phytochemicals and the effects of solvents on phenolic constituents and antioxidant activity of baobab (Adansonia digitata) fruit pulp. Food Chemistry, 277, 279-288. https://doi.org/10.1016/j.foodchem.2018.10.056.
Jin, J., Guoqiang, H., Zhen, M., & Peiji, G. (2010). Antibacterial mechanisms of berberine and reasons for little resistance of bacteria. Chinese Herbal Medicines, 3, 27-35. https://doi.org/10.3969/j.issn.1674-6384.2011.01.007.
Jimenez-Jimenez, C., Moreno, V. M., & Vallet-Regi, M. (2022). Bacteria-assisted transport of nanomaterials to improve drug delivery in cancer therapy. Nanomaterials (Basel), 12(2), 288. https://doi.org/10.3390/nano12020288.
Jubair, N., Rajagopal, M., Chinnappan, S., Abdullah, N. B., & Fatima, A. (2021). Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evidence-Based Complementary and Alternative Medicine, 2021, 3663315. https://doi.org/10.1155/2021/3663315.
Juneja, V. K., Dwivedi, H. P., & Yan, X. (2012). Novel natural food antimicrobials. Annual Review of Food Science and Technology, 3, 381-403. https://doi.org/10.1146/annurev-food-022811-101241.
Karygianni, L., Cecere, M., Argyropoulou, A., Hellwig, E., Skaltsounis, A. L., Wittmer, A., Tchorz, J. P., & Al-Ahmad, A. (2019). Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complementary and Alternative Medicine, 19(1), 1-10. https://doi.org/10.1186/s12906-019-2461-4.
Kengapa, R. T., Kapche, G. D. W. F., Dzoyem, J.-P., Simo, I. K., Ambassa, P., Sandjo, L. P., Abegaz, B. M., & Ngadjui, B. T. (2011). Isoprenoids and flavonoids with antimicrobial activity from Ficus conraui Warburg. Helvetica Chimica Acta, 94, 2231-2238.
Khameneh, B., Iranshahy, M., Soheili, V., & Bazzaz, B. S. F. (2019). Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance and Infection Control, 8, 118. https://doi.org/10.1186/s13756-019-0559-6.
Khan, T., Sankhe, K., Suvarna, V., Sherje, A., Patel, K., & Dravyakar, B. (2018). DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomedicine & Pharmacotherapy, 103, 923-938. https://doi.org/10.1016/j.biopha.2018.04.021.
Kitagawa, M., Shiraishi, T., Yamamoto, S., Kutomi, R., Ohkoshi, Y., Sato, T., Wakui, H., Itoh, H., Miyamoto, A., & Yokota, S. I. (2017). Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains. AMB Express, 7(1), 127. https://doi.org/10.1186/s13568-017-0430-1.
Kleanthous, C., & Armitage, J. P. (2015). The bacterial cell envelope. Philosophical Transactions B, 370(1679), 1-3. https://doi.org/10.1098/rstb.2015.0019.
Koh, J. J., Qiu, S., Zou, H., Lakshminarayanan, R., Li, J., Zhou, X., Tang, C., Saraswathi, P., Verma, C., Tan, D. T., Tan, A. L., Liu, S., & Beuerman, R. W. (2013). Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochimica et Biophysica Acta, 1828(2), 834-844. https://doi.org/10.1016/j.bbamem.2012.09.004.
Kong, Y. H., Zhang, L., Yang, Z. Y., Han, C., Hu, L. H., Jiang, H. L., & Shen, X. (2008). Natural product juglone targets three key enzymes from Helicobacter pylori: Inhibition assay with crystal structure characterization. Acta Pharmacologica Sinica, 29(7), 870-876. https://doi.org/10.1111/j.1745-7254.2008.00808.x.
Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Medica, 76(14), 1479-1491. https://doi.org/10.1055/s-0030-1250027.
Kuete, V., Nono, E. C., Mkounga, P., Marat, K., Hultin, P. G., & Nkengfack, A. E. (2011). Antimicrobial activities of the CH2Cl2-CH3OH (1:1) extracts and compounds from the roots and fruits of Pycnanthus angolensis (Myristicaceae). Natural Product Research, 25(4), 432-443. https://doi.org/10.1080/14786419.2010.522577.
Kumar, V., Sharma, A., Pratap, S., & Kumar, P. (2018a). Biochemical and biophysical characterization of 1,4-naphthoquinone as a dual inhibitor of two key enzymes of type II fatty acid biosynthesis from Moraxella catarrhalis. BBA - Proteins and Proteomics, 1866(11), 1131-1142. https://doi.org/10.1016/j.bbapap.2018.08.008.
Kumar, V., Sharma, A., Pratap, S., & Kumar, P. (2018b). Biophysical and in silico interaction studies of aporphine alkaloids with Malonyl-CoA: ACP transacylase (FabD) from drug resistant Moraxella catarrhalis. Biochimie, 149, 18-33. https://doi.org/10.1016/j.biochi.2018.03.012.
Kumar, V., Sharma, A., Pratap, S., & Kumar, P. (2018c). Characterization of isoflavonoids as inhibitors of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Moraxella catarrhalis: Kinetics, spectroscopic, thermodynamics and in silico studies. BBA - General Subjects, 1862(3), 726-744. https://doi.org/10.1016/j.bbagen.2017.10.017.
Lakhani, M., Azim, S., Akhtar, S., & Ahmad, Z. (2022). Inhibition of Escherichia coli ATP synthase and cell growth by dietary pomegranate phenolics. International Journal of Biological Macromolecules, 213, 195-209. https://doi.org/10.1016/j.ijbiomac.2022.05.111.
Lee, C. J., Chen, L. G., Liang, W. L., & Wang, C. C. (2017). Multiple activities of Punica granatum Linne against acne vulgaris. International Journal of Molecular Science, 18(1). https://doi.org/10.3390/ijms18010141.
Lee, P., & Tan, K. S. (2015). Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Archives of Oral Biology, 60(3), 393-399. https://doi.org/10.1016/j.archoralbio.2014.11.014.
Li, D., Zhang, M., Feng, L., Huang, S., Zhang, B., Liu, S., Deng, S., Wang, C., Ma, X., & Leng, A. (2020). Alkaloids from the nearly ripe fruits of Evodia rutaecarpa and their bioactivities. Fitoterapia, 146(104668), 1-6. https://doi.org/10.1016/j.fitote.2020.104668.
Li, G., Yan, C., Xu, Y., Feng, Y., Wu, Q., Lv, X., Yang, B., Wang, X., & Xia, X. (2014). Punicalagin inhibits Salmonella virulence factors and has anti-quorum-sensing potential. Applied and Environmental Microbiology, 80(19), 6204-6211. https://doi.org/10.1128/AEM.01458-14.
Li, J., Hossain, M. S., Ma, H., Yang, Q., Gong, X., Yang, P., & Feng, B. (2020). Comparative metabolomics reveals differences in flavonoid metabolites among different coloured buckwheat flowers. Journal of Food Composition and Analysis, 85(103335), 1-8. https://doi.org/10.1016/j.jfca.2019.103335.
Liu, H., Zhu, W., Cao, Y., Gao, J., Jin, T., Qin, N., & Xia, X. (2022). Punicalagin inhibits biofilm formation and virulence gene expression of Vibrio parahaemolyticus. Food Control, 139(109045), 1-12. https://doi.org/10.1016/j.foodcont.2022.109045.
Liu, W. H., Liu, T. C., & Mong, M. C. (2015). Antibacterial effects and action modes of asiatic acid. Biomedicine, 5(3), 1-29. https://doi.org/10.7603/s40681-015-0016-7.
Liu, W., Han, C., Hu, L., Chen, K., Shen, X., & Jiang, H. (2006). Characterization and inhibitor discovery of one novel malonyl-CoA: Acyl carrier protein transacylase (MCAT) from Helicobacter pylori. FEBS Letters, 580(2), 697-702. https://doi.org/10.1016/j.febslet.2005.12.085.
Loza-Tavera, H. (1999). Monoterpenes in essential oils - Biosynthesis and properties. In F. Shahidi, P. Kolodziejczyk, J. R. Whitaker, A. L. Munguia, & G. Fuller (Eds.), Chemicals via higher plant bioengineering (Vol. 464, pp. 49-62). Kluwer Academic/Plenum Publishers, New York.
Ludwiczuk, A., Skalicka-Woźniak, K., & Georgiev, M. I. (2017). Terpenoids. Pharmacognosy: Fundamentals, applications and strategies (pp. 233-266). Academic Press.
MacNair, C. R., Brown, E. D., & Dunman, P. (2020). Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. mBio, 11(5). https://doi.org/10.1128/mBio.01615-20.
Mahady, G. B., & Pendland, S. L. (2000). Resveratrol inhibits the growth of Helicobacter pylori in vitro. American Journal of Gastroenterology, 95(7), 1849-1849.
Mahizan, N. A., Yang, S.-K., Moo, C.-L., Song, A. A.-L., Chong, C.-M., Chong, C.-W., Abushelaibi, A., Lim, S.-H. E., & Lai, K.-S. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, 24(14), https://doi.org/10.3390/molecules24142631.
Malik, S. K., Choudhary, R., Kumar, S., Dhariwal, O. P., Deswal, R. P. S., & Chaudhury, R. (2012). Socio-economic and horticultural potential of Khirni [Manilkara hexandra (Roxb.) Dubard]: A promising underutilized fruit species of India. Genetic Resources and Crop Evolution, 59(6), 1255-1265. https://doi.org/10.1007/s10722-012-9863-1.
Mármol, I., Quero, J., Ibarz, R., Ferreira-Santos, P., Teixeira, J. A., Rocha, C. M. R., Pérez-Fernández, M., García-Juiz, S., Osada, J., Martín-Belloso, O., & Rodríguez-Yoldi, M. J. (2021). Valorization of agro-food by-products and their potential therapeutic applications. Food and Bioproducts Processing, 128, 247-258. https://doi.org/10.1016/j.fbp.2021.06.003.
Mateos-Aparicio, I., & Matias, A. (2019). Food industry processing by-products in foods. In The role of alternative and innovative food ingredients and products in consumer wellness (pp. 239-281). Academic Press.
Mickymaray, S. (2019). Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics, 8(4), 1-57. https://doi.org/10.3390/antibiotics8040257.
Mitchell, A. M., & Silhavy, T. J. (2019). Envelope stress responses: balancing damage repair and toxicity. Nature Reviews Microbiology, 17(7), 417-428. https://doi.org/10.1038/s41579-019-0199-0.
Mishra, R., Panda, A. K., De Mandal, S., Shakeel, M., Bisht, S. S., & Khan, J. (2020). Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Frontiers in Microbiology, 11(2020), https://doi.org/10.3389/fmicb.2020.566325.
Mittal, R. P., & Jaitak, V. (2019). Plant-derived natural alkaloids as new antimicrobial and adjuvant agents in existing antimicrobial therapy. Current Drug Targets, 20(14), 1409-1433. https://doi.org/10.2174/1389450120666190618124224.
Molnos, J., Gardiner, R., Dale, G. E., & Lange, R. (2003). A continuous coupled enzyme assay for bacterial malonyl-CoA:acyl carrier protein transacylase (FabD). Analytical Biochemistry, 319(1), 171-176. https://doi.org/10.1016/s0003-2697(03)00327-0.
Moncalvo, A., Marinoni, L., Dordoni, R., Duserm Garrido, G., Lavelli, V., & Spigno, G. (2016). Waste grape skins: Evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food Additives & Contaminants: Part A, 33(7), 1116-1126. https://doi.org/10.1080/19440049.2016.1191320.
Morvan, C., Halpern, D., Kenanian, G., Hays, C., Anba-Mondoloni, J., Brinster, S., Kennedy, S., Trieu-Cuot, P., Poyart, C., Lamberet, G., Gloux, K., & Gruss, A. (2016). Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials. Nature Communication, 7, 12944. https://doi.org/10.1038/ncomms12944.
Morvan, C., Halpern, D., Kénanian, G., Pathania, A., Anba-Mondoloni, J., Lamberet, G., Gruss, A., & Gloux, K. (2017). The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Biochimie, 141, 40-46. https://doi.org/10.1016/j.biochi.2017.07.004.
Murinova, S., & Dercova, K. (2014). Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. International Journal of Microbiology, 2014, 1-16. https://doi.org/10.1155/2014/873081.
Nascimento, P. L., Nascimento, T. C., Ramos, N. S., Silva, G. R., Gomes, J. E., Falcao, R. E., Moreira, K. A., Porto, A. L., & Silva, T. M. (2014). Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules, 19(4), 5434-5447. https://doi.org/10.3390/molecules19045434.
Navarro, M., Stanley, R., Cusack, A., & Sultanbawa, Y. (2015). Combinations of plant-derived compounds against Campylobacter in vitro. Journal of Applied Poultry Research, 24(3), 352-363. https://doi.org/10.3382/japr/pfv035.
Navratilova, A., Nesuta, O., Vancatova, I., Cizek, A., Varela, M. R., Lopez-Aban, J., Villa-Pulgarin, J. A., Mollinedo, F., Muro, A., Zemlickova, H., Kadlecova, D., & Smejkal, K. (2016). C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics. Pharmaceutical Biology, 54(8), 1398-1407. https://doi.org/10.3109/13880209.2015.1103755.
Neill. (2014). Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Retrieved from: https://amr-review.org/ (Accessed 4th October 2022).
Nganou, B. K., Simo Konga, I., Fankam, A. G., Bitchagno, G. T. M., Sonfack, G., Nayim, P., Celik, I., Koyuturk, S., Kuete, V., & Tane, P. (2019). Guttiferone BL with antibacterial activity from the fruits of Allanblackia gabonensis. Natural Product Research, 33(18), 2638-2646. https://doi.org/10.1080/14786419.2018.1465424.
Nono, E. C. N., Mkounga, P., Kuete, V., Marat, K., Hultin, P. G., & Nkengfack, A. E. (2010). Pycnanthulignenes A-D, antimicrobial cyclolignene derivatives from the roots of Pycnanthus angolensis. Journal of Natural Products, 73, 213-216.
Ohemeng, K. A., Schwender, C. F., Fu, K. P., & Barrett, J. F. (1993). DNA gyrase inhibitory and antibacterial activity of some Flavones(l). Bioorganic & Medicinal Chemistry Letters, 3(2), 225-230.
Ohene-Agyei, T., Mowla, R., Rahman, T., & Venter, H. (2014). Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiologyopen, 3(6), 885-896. https://doi.org/10.1002/mbo3.212.
Omar, F., Tareq, A. M., Alqahtani, A. M., Dhama, K., Sayeed, M. A., Emran, T. B., & Simal-Gandara, J. (2021). Plant-based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules, 26(8), 1-26. https://doi.org/10.3390/molecules26082297.
Özcelik, B., Orhan, I., & Toker, G. L. (2006). Antiviral and antimicrobial assessment of some selected flavonoids. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences, 61, 632-638.
Pages, J. M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nature Review Microbiology, 6(12), 893-903. https://doi.org/10.1038/nrmicro1994.
Pan, J. Y., Chen, S. L., Yang, M. H., Wu, J., Sinkkonen, J., & Zou, K. (2009). An update on lignans: Natural products and synthesis. Natural Product Reports, 26(10), 1251-1292. https://doi.org/10.1039/b910940d.
Pappalardo, C. (2018). Consumers’ perception of products with bioactive compounds from seafood residues. BE Sustainable. Available from: https://www.besustainablemagazine.com/cms2/consumers-perception-on-bioactive-compounds-from-seafood-residues/) (Accessed 4th October 2022).
Patel, B. A., D'Amico, T. L., & Blagg, B. S. J. (2020). Natural products and other inhibitors of F1FO ATP synthase. European Journal of Medicinal Chemistry, 207, 112779. https://doi.org/10.1016/j.ejmech.2020.112779.
Paulo, L., Ferreira, S., Gallardo, E., Queiroz, J. A., & Domingues, F. (2010). Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World Journal of Microbiology and Biotechnology, 26(8), 1533-1538. https://doi.org/10.1007/s11274-010-0325-7.
Perveen, S., & Al-Taweel, A. M. (2017). Phenolic compounds from the natural sources and their cytotoxicity. In M. Soto-Hernandez, M. Palma-Tenango, & M. d. R. Garcia-Mateos (Eds.), Phenolic compounds - Natural sources, importance and applications. IntechOpen.
Pichersky, E., & Raguso, R. A. (2018). Why do plants produce so many terpenoid compounds? New Phytologist, 220(3), 692-702. https://doi.org/10.1111/nph.14178.
Plummer, A. M., & Fleming, K. G. (2016). From chaperones to the membrane with a BAM! Trends in Biochemical Sciences, 41(10), 872-882. https://doi.org/10.1016/j.tibs.2016.06.005.
Polbuppha, I., Suthiphasilp, V., Maneerat, T., Charoensup, R., Limtharakul, T., Cheenpracha, S., Pyne, S. G., & Laphookhieo, S. (2021). Macluracochinones A-E, antimicrobial flavonoids from Maclura cochinchinensis (Lour.) Corner. Phytochemistry, 187(112773), 1-7. https://doi.org/10.1016/j.phytochem.2021.112773.
Porras, G., Chassagne, F. i., Lyles, J. T., Marquez, L., Dettweiler, M., Salam, A. M., Samarakoon, T., Shabih, S., Farrokhi, D. R., & Quave, C. L. (2021). Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chemical Reviews, 121(6), 3495-3560. https://doi.org/10.1021/acs.chemrev.0c00922.
Powers, M. J., & Trent, M. S. (2018). Phospholipid retention in the absence of asymmetry strengthens the outer membrane permeability barrier to last-resort antibiotics. PNAS, 115(36), E8518-E8527. https://doi.org/10.1073/pnas.1806714115.
Prasch, S., & Bucar, F. (2015). Plant derived inhibitors of bacterial efflux pumps: An update. Phytochemistry Reviews, 14(6), 961-974. https://doi.org/10.1007/s11101-015-9436-y.
Pu, C., & Tang, W. (2017). The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food & Function, 8(11), 4159-4169. https://doi.org/10.1039/c7fo00994a.
Rana, P., Ghouse, S. M., Akunuri, R., Madhavi, Y. V., Chopra, S., & Nanduri, S. (2020). FabI (enoyl acyl carrier protein reductase) - A potential broad spectrum therapeutic target and its inhibitors. European Journal of Medicinal Chemistry, 208(112757), 1-16. https://doi.org/10.1016/j.ejmech.2020.112757.
Ravishankar, S., Kumar, V. P., Chandrakala, B., Jha, R. K., Solapure, S. M., & de Sousa, S. M. (2005). Scintillation proximity assay for inhibitors of Escherichia coli MurG and, optionally, MraY. Antimicrobial Agents and Chemotherapy, 49(4), 1410-1418. https://doi.org/10.1128/AAC.49.4.1410-1418.2005.
Reguengo, L. M., Salgaco, M. K., Sivieri, K., & Marostica, M. R., Jr. (2022). Agro-industrial by-products: Valuable sources of bioactive compounds. Food Research International, 152, 1-20. https://doi.org/10.1016/j.foodres.2021.110871.
Ricci, D. P., & Silhavy, T. J. (2019). Outer membrane protein insertion by the beta-barrel assembly machine. EcoSal Plus, 8(2), 1-9. https://doi.org/10.1128/ecosalplus.ESP-0035-2018.
Rodriguez-Garcia, C., Sanchez-Quesada, C., Toledo, E., Delgado-Rodriguez, M., & Gaforio, J. J. (2019). Naturally lignan-rich foods: A dietary tool for health promotion? Molecules, 24(5), 1-25. https://doi.org/10.3390/molecules24050917.
Rodriguez-Roque, M. J., Rojas-Grau, M. A., Elez-Martinez, P., & Martin-Belloso, O. (2013). Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chemistry, 136(1), 206-212. https://doi.org/10.1016/j.foodchem.2012.07.115.
Rosas, N. C., & Lithgow, T. (2022). Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. Trends in Microbiology, 30(6), 544-552. https://doi.org/10.1016/j.tim.2021.11.002.
Salaheen, S., Jaiswal, E., Joo, J., Peng, M., Ho, R., Oconnor, D., Adlerz, K., Aranda-Espinoza, J. H., & Biswas, D. (2016). Bioactive extracts from berry byproducts on the pathogenicity of Salmonella typhimurium. International Journal of Food Microbiology, 237, 128-135. https://doi.org/10.1016/j.ijfoodmicro.2016.08.027.
Sareena, C., & Vasu, S. T. (2020). Identification of 4-diphenylamino 3-iodo coumarin as a potent inhibitor of DNA gyrase B of S. aureus. Microbial Pathogenesis, 147(104387), 1-8. https://doi.org/10.1016/j.micpath.2020.104387.
Scheffers, D. J., & Pinho, M. G. (2005). Bacterial cell wall synthesis: New insights from localization studies. Microbiology and Molecular Biology Reviews, 69(4), 585-607. https://doi.org/10.1128/MMBR.69.4.585-607.2005.
Seukep, A. J., Kuete, V., Nahar, L., Sarker, S. D., & Guo, M. (2020). Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. Journal of Pharmaceutical Analysis, 10(4), 277-290. https://doi.org/10.1016/j.jpha.2019.11.002.
Seow, Y. X., Yeo, C. R., Chung, H. L., & Yuk, H.-G. (2013). Plant essential oils as active antimicrobial agents. Critical Reviews in Food Science and Nutrition, 54(5), 625-644. https://doi.org/10.1080/10408398.2011.599504.
Shang, X., Morris-Natschke, S. L., Yang, G., Liu, Y., Guo, X., Xu, X., Goto, M., Li, J., Zhang, J., & Lee, K. H. (2018). Biologically active quinoline and quinazoline alkaloids part II. Medicinal Research Reviews, 38(5), 1614-1660. https://doi.org/10.1002/med.21492.
Shao, T. M., Liao, H. X., Li, X. B., Chen, G. Y., Song, X. P., & Han, C. R. (2021). A new isoflavone from the fruits of Ficus auriculata and its antibacterial activity. Natural Product Research, 36(5), 1191-1196. https://doi.org/10.1080/14786419.2020.1864368.
Sharma, A., Biharee, A., Kumar, A., & Jaitak, V. (2020). Antimicrobial terpenoids as a potential substitute in overcoming antimicrobial resistance. Current Drug Targets, 21(14), 1476-1494. https://doi.org/10.2174/1389450121666200520103427.
Sharma, A., Gupta, V. K., & Pathania, R. (2019). Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian Journal of Medical Research, 149(2), 129-145. https://doi.org/10.4103/ijmr.IJMR_2079_17.
Silva, L. N., Zimmer, K. R., Macedo, A. J., & Trentin, D. S. (2016). Plant natural products targeting bacterial virulence factors. Chemical Review, 116(16), 9162-9236. https://doi.org/10.1021/acs.chemrev.6b00184.
Silva, V., Falco, V., Dias, M. I., Barros, L., Silva, A., Capita, R., Alonso-Calleja, C., Amaral, J. S., Igrejas, G., Ferreira, I. C. F. R., & Poeta, P. (2020). Evaluation of the phenolic profile of Castanea sativa Mill. By-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants, 9(87), 1-14. https://doi.org/10.3390/antiox9010087.
Simpson, B. W., May, J. M., Sherman, D. J., Kahne, D., & Ruiz, N. (2015). Lipopolysaccharide transport to the cell surface: Biosynthesis and extraction from the inner membrane. Philosophical Transactions B, 370(1679), 20150029. https://doi.org/10.1098/rstb.2015.0029.
Simin, F., Zisheng, L., Yanbing, Z., Zhou, Z., & Baiyi, L. (2014). Phytochemical contents and antioxidant capacities of different parts of two sugarcane (Saccharum officinarum L.) cultivars. Food Chemistry, 151, 452-458. Retrieved from://FSTA:2014-05-La1413.
Singh, S., Pathak, N., Fatima, E., & Negi, A. S. (2021). Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. European Journal of Medicinal Chemistry, 226(113839), 1-26. https://doi.org/10.1016/j.ejmech.2021.113839.
Siridechakorn, I., Phakhodee, W., Ritthiwigrom, T., Promgool, T., Deachathai, S., Cheenpracha, S., Prawat, U., & Laphookhieo, S. (2012). Antibacterial dihydrobenzopyran and xanthone derivatives from Garcinia cowa stem barks. Fitoterapia, 83(8), 1430-1424. https://doi.org/10.1016/j.fitote.2012.08.006.
Sivaranjani, M., Prakash, M., Gowrishankar, S., Rathna, J., Pandian, S. K., & Ravi, A. V. (2017). In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Applied Microbiology and Biotechnology, 101(8), 3349-3359. https://doi.org/10.1007/s00253-017-8231-7.
Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: Are they safe enough for their valorization? Trends in Food Science & Technology, 114, 133-147. https://doi.org/10.1016/j.tifs.2021.05.002.
Sohn, S. I., Pandian, S., Oh, Y. J., Kang, H. J., Cho, W. S., & Cho, Y. S. (2021). Metabolic engineering of isoflavones: An updated overview. Frontiers in Plant Science, 12, 1-17. https://doi.org/10.3389/fpls.2021.670103.
Soleimanian, Y., Sanou, I., Turgeon, S. L., Canizares, D., & Khalloufi, S. (2022). Natural plant fibers obtained from agricultural residue used as an ingredient in food matrixes or packaging materials: A review. Comprehensive Review in Food Science and Food Safety, 21(1), 371-415. https://doi.org/10.1111/1541-4337.12875.
Song, M., Liu, Y., Li, T., Liu, X., Hao, Z., Ding, S., Panichayupakaranant, P., Zhu, K., & Shen, J. (2021). Plant natural flavonoids against multidrug resistant pathogens. Advanced Science, 8(15), 2100749 (2100741 of 2100711). https://doi.org/10.1002/advs.202100749.
Sriyatep, T., Siridechakorn, I., Maneerat, W., Pansanit, A., Ritthiwigrom, T., Andersen, R. J., & Laphookhieo, S. (2015). Bioactive prenylated xanthones from the young fruits and flowers of Garcinia cowa. Journal of Natural Products, 78(2), 265-271. https://doi.org/10.1021/np5008476.
Steenhuis, M., van Ulsen, P., Martin, N. I., & Luirink, J. (2021). A ban on BAM: An update on inhibitors of the beta-barrel assembly machinery. FEMS Microbiology Letters, 368(11). https://doi.org/10.1093/femsle/fnab059.
Strahl, H., & Errington, J. (2017). Bacterial membranes: structure, domains, and function. Annual Review of Microbiology, 71, 519-538. https://doi.org/10.1146/annurev-micro-102215-095630.
Suntres, Z. E., Coccimiglio, J., & Alipour, M. (2015). The bioactivity and toxicological actions of carvacrol. Critical Reviews in Food Science and Nutrition, 55(3), 304-318. https://doi.org/10.1080/10408398.2011.653458.
Sun, S., Huang, S., Shi, Y., Shao, Y., Qiu, J., Sedjoah, R. A., Yan, Z., Ding, L., Zou, D., & Xin, Z. (2021). Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chemistry, 351, 129232. https://doi.org/10.1016/j.foodchem.2021.129232.
Ta, C. A., & Arnason, J. T. (2015). Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules, 21(1), E29. https://doi.org/10.3390/molecules21010029.
Tanaka, Y., & Van Ke, N. (2007). Edible wild plants of Vietnam: The bountiful garden (Vol. p. 96.). Orchid Press.
Tavares, L. S., Rettore, J. V., Freitas, R. M., Porto, W. F., Duque, A. P., Singulani Jde, L., Silva, O. N., Detoni Mde, L., Vasconcelos, E. G., Dias, S. C., Franco, O. L., & Santos Mde, O. (2012). Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides, 37(2), 294-300. https://doi.org/10.1016/j.peptides.2012.07.017.
Thepthong, P., Phongpaichit, S., Carroll, A. R., Voravuthikunchai, S. P., & Mahabusarakam, W. (2017). Prenylated xanthones from the stem bark of Garcinia dulcis. Phytochemistry Letters, 21, 32-37. https://doi.org/10.1016/j.phytol.2017.05.014.
Trigo, J. P., Alexandre, E. M. C., Saraiva, J. A., & Pintado, M. E. (2020). High value-added compounds from fruit and vegetable by-products - Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition, 60(8), 1388-1416. https://doi.org/10.1080/10408398.2019.1572588.
Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents Chemotherapy, 49(6), 2474-2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005.
Tripathy, S., & Sahu, S. K. (2019). FtsZ inhibitors as a new genera of antibacterial agents. Bioorganic Chemistry, 91(103169), 1-24. https://doi.org/10.1016/j.bioorg.2019.103169.
Truchado, P., Larrosa, M., Castro-Ibáñez, I., & Allende, A. (2015). Plant food extracts and phytochemicals: Their role as Quorum Sensing Inhibitors. Trends in Food Science & Technology, 43(2), 189-204. https://doi.org/10.1016/j.tifs.2015.02.009.
Verma, S., & Pandey, A. K. (2021). Exploring nature's treasure to inhibit β-barrel assembly machinery of antibiotic resistant bacteria: An in silico approach. Letters in Drug Design & Discovery, 18(4), 325-337. https://doi.org/10.2174/1570180818999201224121342.
Vestergaard, M., & Ingmer, H. (2019). Antibacterial and antifungal properties of resveratrol. International Journal of Antimicrobial Agents, 53(6), 716-723. https://doi.org/10.1016/j.ijantimicag.2019.02.015.
Vila, J., Moreno-Morales, J., & Balleste-Delpierre, C. (2020). Current landscape in the discovery of novel antibacterial agents. Clinical Microbiology and Infection, 26(5), 596-603. https://doi.org/10.1016/j.cmi.2019.09.015.
Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. S. (2021). Natural bioactive compounds from food waste: Toxicity and safety concerns. Foods, 10(7), 1564. https://doi.org/10.3390/foods10071564.
Waditzer, M., & Bucar, F. (2021). Flavonoids as inhibitors of bacterial efflux pumps. Molecules, 26(22), 6904. https://doi.org/10.3390/molecules26226904.
Wallace, J., Bowlin, N. O., Mills, D. M., Saenkham, P., Kwasny, S. M., Opperman, T. J., Williams, J. D., Rock, C. O., Bowlin, T. L., & Moir, D. T. (2015). Discovery of bacterial fatty acid synthase type II inhibitors using a novel cellular bioluminescent reporter assay. Antimicrobial Agents and Chemotherapy, 59(9), 5775-5787. https://doi.org/10.1128/AAC.00686-15.
Wang, H., Xu, X., Wang, X., Guo, W., Jia, W., & Zhang, F. (2022). An analytical strategy for discovering structural analogues of alkaloids in plant food using characteristic structural fragments extraction by high resolution orbitrap mass spectrometry. LWT, 154(15), 112329. https://doi.org/10.1016/j.lwt.2021.112329.
Wang, J., Ren, H., Xu, Q. L., Zhou, Z. Y., Wu, P., Wei, X. Y., Cao, Y., Chen, X. X., & Tan, J. W. (2015). Antibacterial oleanane-type triterpenoids from pericarps of Akebia trifoliata. Food Chemistry, 168, 623-629. https://doi.org/10.1016/j.foodchem.2014.07.105.
Wang, J., Xu, Q. L., Zheng, M. F., Ren, H., Lei, T., Wu, P., Zhou, Z. Y., Wei, X. Y., & Tan, J. W. (2014). Bioactive 30-noroleanane triterpenes from the pericarps of Akebia trifoliata. Molecules, 19(4), 4301-4312. https://doi.org/10.3390/molecules19044301.
Wang, L. H., Zeng, X. A., Wang, M. S., Brennan, C. S., & Gong, D. (2018). Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. BBA - Biomembranes, 1860(2), 481-490. https://doi.org/10.1016/j.bbamem.2017.11.007.
Wang, T., Liu, Y., Li, X., Xu, Q., Feng, Y., & Yang, S. (2018). Isoflavones from green vegetable soya beans and their antimicrobial and antioxidant activities. Journal of the Science of Food and Agriculture, 98(5), 2043-2047. https://doi.org/10.1002/jsfa.8663.
Wang, X., Zan, K., Shi, S., Zeng, K., Jiang, Y., Guan, Y., Xiao, C., Gao, H., Wu, L., & Tu, P. (2013). Quinolone alkaloids with antibacterial and cytotoxic activities from the fruits of Evodia rutaecarpa. Fitoterapia, 89, 1-7. https://doi.org/10.1016/j.fitote.2013.04.007.
Wang, Y., & Ma, S. (2013). Recent advances in inhibitors of bacterial fatty acid synthesis type II (FASII) system enzymes as potential antibacterial agents. ChemMedChem, 8(10), 1589-1608. https://doi.org/10.1002/cmdc.201300209.
Wen, S. Q., Jeyakkumar, P., Avula, S. R., Zhang, L., & Zhou, C. H. (2016). Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorganic & Medicinal Chemistry Letters, 26(12), 2768-2773. https://doi.org/10.1016/j.bmcl.2016.04.070.
Whitfield, C., & Stephen Trent, M. (2014). Biosynthesis and export of bacterial lipopolysaccharides. Annual Review of Biochemistry, 83, 99-128. https://doi.org/10.1146/annurev-biochem-060713-035600.
Wijesundara, N. M., Lee, S. F., Cheng, Z., Davidson, R., & Rupasinghe, H. P. V. (2021). Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Scientific Reports, 11(1), 1487. https://doi.org/10.1038/s41598-020-79713-0.
Winans, K., Kendall, A., & Deng, H. (2017). The history and current applications of the circular economy concept. Renewable & Sustainable Energy Reviews, 68, 825-833. https://doi.org/10.1016/j.rser.2016.09.123.
Wu, H., Yang, H. X., Li, Z. H., Feng, T., & Liu, J. K. (2021). Psathyrellins A-E, antibacterial guanacastane diterpenoids from mushroom Psathyrella candolleana. Natural Products and Bioprospecting, 11, 447-452. https://doi.org/10.1007/s13659-021-00316-x.
Wu, P. Q., Cui, Y. S., Han, X. Y., Wang, C., An, P. P., Zhou, J. S., Ren, Y. H., Liu, Z. L., Lin, R. T., Zhou, B., & Yue, J. M. (2022). Diterpenoids from Sauropus spatulifolius leaves with antimicrobial activities. Journal of Natural Products, 85(5), 1304-1314. https://doi.org/10.1021/acs.jnatprod.2c00020.
Wu, S., Yang, K., Hong, Y., Gong, Y., Ni, J., Yang, N., & Ding, W. (2022). A new perspective on the antimicrobial mechanism of berberine hydrochloride against Staphylococcus aureus revealed by untargeted metabolomic studies. Frontiers in Microbiology, 13, 1-13. https://doi.org/10.3389/fmicb.2022.917414.
Wu, S. C., Yang, Z. Q., Liu, F., Peng, W. J., Qu, S. Q., Li, Q., Song, X. B., Zhu, K., & Shen, J. Z. (2019). Antibacterial effect and mode of action of flavonoids from licorice against methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 10, 2489. https://doi.org/10.3389/fmicb.2019.02489.
Wu, Y., Bai, J., Zhong, K., Huang, Y., Qi, H., Jiang, Y., & Gao, H. (2016). Antibacterial activity and membrane-disruptive mechanism of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a novel phenolic compound from pine needles of Cedrus deodara, against Staphylococcus aureus. Molecules, 21(8), 1084. https://doi.org/10.3390/molecules21081084.
Xu, W., Tan, J., Mu, Y., Zheng, D., Huang, X., & Li, L. (2020). New antimicrobial terpenoids and phloroglucinol glucosides from Syzygium szemaoense. Bioorganic Chemistry, 103, 104242. https://doi.org/10.1016/j.bioorg.2020.104242.
Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics (Basel), 10(3), 318. https://doi.org/10.3390/antibiotics10030318.
Yang, S.-K., Low, L.-Y., Yap, P. S.-X., Yusoff, K., Mai, C.-W., Lai, K.-S., & Lim, S.-H. E. (2018). Plant-derived antimicrobials: Insights into mitigation of antimicrobial resistance. Records of Natural Products, 12(4), 295-396. doi:10.25135/rnp.41.17.09.058.
Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z., & Yu, X. (2020). Advances in pharmacological activities of terpenoids. Natural Product Communications, 15(3), https://doi.org/10.1177/1934578x20903555.
Yang, Z., He, Q., Ismail, B. B., Hu, Y., & Guo, M. (2022). Ultrasonication induced nano-emulsification of thyme essential oil: Optimization and antibacterial mechanism against Escherichia coli. Food Control, 133(108609), 1-10. https://doi.org/10.1016/j.foodcont.2021.108609.
Yi, W. F., Chen, D. Z., Ding, X., Li, X. N., Li, S. L., Di, Y. T., Zhang, Y., & Hao, X. J. (2018). Cytotoxic indole alkaloids from Melodinus khasianus and Melodinus tenuicaudatus. Fitoterapia, 128, 162-168. https://doi.org/10.1016/j.fitote.2018.05.015.
Yin, L., Zhang, Y., Azi, F., Zhou, J., Liu, X., Dai, Y., Wang, Z., Dong, M., & Xia, X. (2022). Inhibition of biofilm formation and quorum sensing by soy isoflavones in Pseudomonas aeruginosa. Food Control, 133, 108629. https://doi.org/10.1016/j.foodcont.2021.108629.
Yu, J., Bi, X., Yu, B., & Chen, D. (2016). Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients, 8(6), 1-16. https://doi.org/10.3390/nu8060361.
Yuan, G., Guan, Y., Yi, H., Lai, S., Sun, Y., & Cao, S. (2021). Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Scientific Reports, 11(10471), https://doi.org/10.1038/s41598-021-90035-7.
Zaheer, K., & Akhtar Humayoun, M. (2017). An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Critical Reviews in Food Science and Nutrition, 57(6), 1280-1293. https://doi.org/10.1080/10408398.2014.989958.
Zambrano, C., Kerekes, E. B., Kotogán, A., Papp, T., Vágvölgyi, C., Krisch, J., & Takó, M. (2019). Antimicrobial activity of grape, apple and pitahaya residue extracts after carbohydrase treatment against food-related bacteria. LWT, 100, 416-425. https://doi.org/10.1016/j.lwt.2018.10.044.
Zhang, L., Kong, Y., Wu, D., Zhang, H., Wu, J., Chen, J., Ding, J., Hu, L., Jiang, H., & Shen, X. (2008). Protein & Science, 17(11), 1971-1978. https://doi.org/10.1110/ps.036186.108.
Zhang, L., Liu, W., Hu, T., Du, L., Luo, C., Chen, K., Shen, X., & Jiang, H. (2008). Structural basis for catalytic and inhibitory mechanisms of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). Journal of Biological Chemistry, 283(9), 5370-5379. https://doi.org/10.1074/jbc.M705566200.
Zhang, L., & Wang, M. (2017). Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. International Journal of Biological Macromolecules, 95, 675-681. https://doi.org/10.1016/j.ijbiomac.2016.11.096.
Zhang, Y. M., & Rock, C. O. (2004). Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. Journal of Biological Chemistry, 279(30), 30994-31001. https://doi.org/10.1074/jbc.M403697200.
Zhao, X., Chen, L., Wu, J., He, Y., & Yang, H. (2020). Elucidating antimicrobial mechanism of nisin and grape seed extract against Listeria monocytogenes in broth and on shrimp through NMR-based metabolomics approach. International Journal of Food Microbiology, 319(2020), 108494. https://doi.org/10.1016/j.ijfoodmicro.2019.108494.
Zheng, J. B., & Ramirez, V. D. (2000). Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. British Journal of Pharmacology, 130(5), 1115-1123. https://doi.org/10.1038/sj.bjp.0703397.
Zielinska-Blajet, M., & Feder-Kubis, J. (2020). Monoterpenes and their derivatives-recent development in biological and medical applications. International Journal of Molecular Sciences, 21(19), 7078. https://doi.org/10.3390/ijms21197078. - Grant Information: 32001799 National Natural Science Foundation of China; 32272474 National Natural Science Foundation of China; LR23C200002 Science Fund for Distinguished Young Scholars of Zhejiang Province, China; LQ20C200014 Natural Science Foundation of Zhejiang Province
- Contributed Indexing: Keywords: antimicrobial resistance; bacterial pathogens; inhibitory mechanisms; natural antimicrobial agents; plant byproducts
- Accession Number: 0 (Plant Extracts)
0 (Anti-Infective Agents) - Publication Date: Date Created: 20230418 Date Completed: 20230717 Latest Revision: 20240515
- Publication Date: 20240516
- Accession Number: 10.1111/1541-4337.13152
- Accession Number: 37070214
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.