Engineering osmolysis susceptibility in Cupriavidus necator and Escherichia coli for recovery of intracellular products.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101139812 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2859 (Electronic) Linking ISSN: 14752859 NLM ISO Abbreviation: Microb Cell Fact Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2002-
    • Subject Terms:
    • Abstract:
      Background: Intracellular biomacromolecules, such as industrial enzymes and biopolymers, represent an important class of bio-derived products obtained from bacterial hosts. A common key step in the downstream separation of these biomolecules is lysis of the bacterial cell wall to effect release of cytoplasmic contents. Cell lysis is typically achieved either through mechanical disruption or reagent-based methods, which introduce issues of energy demand, material needs, high costs, and scaling problems. Osmolysis, a cell lysis method that relies on hypoosmotic downshock upon resuspension of cells in distilled water, has been applied for bioseparation of intracellular products from extreme halophiles and mammalian cells. However, most industrial bacterial strains are non-halotolerant and relatively resistant to hypoosmotic cell lysis.
      Results: To overcome this limitation, we developed two strategies to increase the susceptibility of non-halotolerant hosts to osmolysis using Cupriavidus necator, a strain often used in electromicrobial production, as a prototypical strain. In one strategy, C. necator was evolved to increase its halotolerance from 1.5% to 3.25% (w/v) NaCl through adaptive laboratory evolution, and genes potentially responsible for this phenotypic change were identified by whole genome sequencing. The evolved halotolerant strain experienced an osmolytic efficiency of 47% in distilled water following growth in 3% (w/v) NaCl. In a second strategy, the cells were made susceptible to osmolysis by knocking out the large-conductance mechanosensitive channel (mscL) gene in C. necator. When these strategies were combined by knocking out the mscL gene from the evolved halotolerant strain, greater than 90% osmolytic efficiency was observed upon osmotic downshock. A modified version of this strategy was applied to E. coli BL21 by deleting the mscL and mscS (small-conductance mechanosensitive channel) genes. When grown in medium with 4% NaCl and subsequently resuspended in distilled water, this engineered strain experienced 75% cell lysis, although decreases in cell growth rate due to higher salt concentrations were observed.
      Conclusions: Our strategy is shown to be a simple and effective way to lyse cells for the purification of intracellular biomacromolecules and may be applicable in many bacteria used for bioproduction.
      (© 2023. The Author(s).)
    • References:
      Appl Environ Microbiol. 2008 Apr;74(8):2454-60. (PMID: 18310427)
      Environ Microbiol. 2015 Feb;17(2):527-40. (PMID: 25631756)
      Biotechnol Adv. 2009 Mar-Apr;27(2):153-76. (PMID: 19041387)
      J Bacteriol. 2012 Jun;194(12):3116-27. (PMID: 22505677)
      Microb Biotechnol. 2015 Jan;8(1):155-63. (PMID: 25123319)
      Crit Rev Biotechnol. 2018 May;38(3):321-334. (PMID: 28789570)
      J Bacteriol. 2015 Jan 1;197(1):231-7. (PMID: 25349158)
      Appl Environ Microbiol. 2013 Dec;79(23):7150-9. (PMID: 24038694)
      Trends Biotechnol. 2012 Oct;30(10):538-45. (PMID: 22921756)
      Sci Rep. 2015 Dec 08;5:17874. (PMID: 26643270)
      Trends Biotechnol. 2021 Apr;39(4):412-424. (PMID: 33518389)
      Nucleic Acids Res. 2021 Jan 8;49(D1):D1020-D1028. (PMID: 33270901)
      Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268. (PMID: 31777944)
      PLoS One. 2016 Feb 05;11(2):e0148888. (PMID: 26848578)
      Biotechnol Biofuels. 2019 Jun 28;12:163. (PMID: 31297151)
      Appl Environ Microbiol. 2014 May;80(9):2880-8. (PMID: 24584246)
      J Bacteriol. 2002 Jun;184(11):2940-50. (PMID: 12003934)
      Comput Struct Biotechnol J. 2021 Feb 01;19:1014-1027. (PMID: 33613867)
      Biotechnology (N Y). 1994 Dec;12(13):1357-60. (PMID: 7765566)
      World J Microbiol Biotechnol. 2018 Jun 9;34(7):89. (PMID: 29886519)
      Science. 2016 Jun 3;352(6290):1210-3. (PMID: 27257255)
      Environ Sci Technol. 2011 Mar 1;45(5):1751-6. (PMID: 21265567)
      J Bacteriol. 1989 Jan;171(1):558-60. (PMID: 2644207)
      Microb Cell Fact. 2013 Jul 01;12:64. (PMID: 23815749)
      Microbiology (Reading). 1996 Oct;142 ( Pt 10):2887-95. (PMID: 8885405)
      Microb Cell Fact. 2013 Nov 13;12:107. (PMID: 24219429)
      Res Microbiol. 2009 Mar;160(2):117-24. (PMID: 19063962)
      Biotechnol Adv. 2019 Nov 1;37(6):107365. (PMID: 30851362)
      J Appl Microbiol. 2013 Feb;114(2):384-95. (PMID: 23176757)
      Microbiology (Reading). 2011 Jan;157(Pt 1):29-37. (PMID: 20884690)
      Biotechnol Bioeng. 1989 Apr 20;33(10):1330-42. (PMID: 18587868)
      EMBO J. 1999 Apr 1;18(7):1730-7. (PMID: 10202137)
      3 Biotech. 2016 Dec;6(2):174. (PMID: 28330246)
      Front Bioeng Biotechnol. 2021 Feb 10;9:624021. (PMID: 33644018)
      ACS Synth Biol. 2018 Aug 17;7(8):1918-1928. (PMID: 29949349)
      Microbiol Resour Announc. 2019 Sep 12;8(37):. (PMID: 31515345)
      Cell Calcium. 2015 Mar;57(3):140-50. (PMID: 25591932)
      Bioresour Technol. 2011 Sep;102(17):8130-6. (PMID: 21680179)
      Nature. 2009 Oct 29;461(7268):1243-7. (PMID: 19838166)
      Drug Discov Today. 2020 Oct 16;:. (PMID: 33075470)
      Biotechnol Bioeng. 2023 Aug 28;:. (PMID: 37638652)
      Nat Methods. 2009 May;6(5):343-5. (PMID: 19363495)
      Int J Biol Macromol. 2020 Apr 15;149:593-599. (PMID: 32001289)
      Environ Microbiol. 2017 Nov;19(11):4599-4619. (PMID: 28892254)
      Appl Microbiol Biotechnol. 2017 Oct;101(20):7497-7507. (PMID: 28889198)
      Curr Opin Biotechnol. 2019 Jun;57:160-166. (PMID: 31075553)
    • Grant Information:
      NNX17AJ31G United States NASA NASA
    • Contributed Indexing:
      Keywords: Adaptive laboratory evolution; Bacteria cell lysis; Bioseparations; Mechanosensitive channel; Osmolysis
    • Accession Number:
      0 (Ion Channels)
      451W47IQ8X (Sodium Chloride)
      0 (Escherichia coli Proteins)
      059QF0KO0R (Water)
      0 (MscL protein, E coli)
    • Publication Date:
      Date Created: 20230412 Date Completed: 20230414 Latest Revision: 20230919
    • Publication Date:
      20231215
    • Accession Number:
      PMC10091555
    • Accession Number:
      10.1186/s12934-023-02064-8
    • Accession Number:
      37046248