hsa-mir-(4328, 4422, 548z and -628-5p) in diabetic retinopathy: diagnosis, prediction and linking a new therapeutic target.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aims: Growing evidence suggests that microRNAs (miRNAs) are crucial in controlling how diabetic retinopathy (DR) develops. We intend to mine miRNAs with diagnostic and predictive value for DR and to investigate new drug therapeutic targets.
      Methods: After performing a differential analysis on the miRNA and mRNA datasets for DR and neovascularization (NEO), miRNA-mRNA networks were created. Combine the results of enrichment analysis, Protein-Protein Interaction Networks (PPI), and Cytoscape to identify key miRNAs. DrugBank was used to find drugs that interacted with transcription factors (TF) predicted by TransmiR. Finally, whole blood and clinical data were collected from 58 patients with type 2 diabetes mellitus (T2DM), and RT-qPCR, logistic analysis, and ROC were used to verify the value of key miRNAs.
      Results: Differential analysis indicated the presence of genes and miRNAs that co-regulate DR and NEO. Enrichment analysis showed that key genes are inextricably linked to neovascularization. Combining the results of PPI and Cytoscape identified four key miRNAs, namely hsa-mir-(4328, 4422, 548z and -628-5p). RT-qPCR, logistic, and ROC results showed that decreased expression levels of hsa-mir-(4328, 4422, 548z and -628-5p) signal the risk of evolution to DR in T2DM patients. Finally, we constructed a TF-miRNA network to find the 15 TFs and the 35 drugs that interact with these TFs.
      Conclusion: hsa-mir-(4328, 4422, 548z and -628-5p) in whole blood are protective factors for DR as novel biomarkers for diagnosis and prediction. In addition, our research provides new drug directions for the treatment of DR, such as Diosmin, Atorvastatin, and so on.
      (© 2023. Springer-Verlag Italia S.r.l., part of Springer Nature.)
    • References:
      Wang W, Lo ACY (2018) Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci 19(6):1816. https://doi.org/10.3390/ijms19061816. (PMID: 10.3390/ijms19061816299257896032159)
      Feldman-Billard S, Larger É, Massin P; Standards for screening and surveillance of ocular complications in people with diabetes SFD study group (2018) Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab 44(1):4–14. https://doi.org/10.1016/j.diabet.2017.10.014.
      Stitt AW, Curtis TM, Chen M et al (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186. https://doi.org/10.1016/j.preteyeres.2015.08.001. (PMID: 10.1016/j.preteyeres.2015.08.00126297071)
      Lai AK, Lo AC (2013) Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res. https://doi.org/10.1155/2013/106594. (PMID: 10.1155/2013/106594242860863826427)
      Wong TY, Mwamburi M, Klein R et al (2009) Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care 32(12):2307–2313. https://doi.org/10.2337/dc09-0615. (PMID: 10.2337/dc09-0615199402272782996)
      Bourne RR, Stevens GA, White RA et al (2013) Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health 1(6):e339–e349. https://doi.org/10.1016/S2214-109X(13)70113-X. (PMID: 10.1016/S2214-109X(13)70113-X25104599)
      Liao PL, Lin CH, Li CH et al (2017) Anti-inflammatory properties of shikonin contribute to improved early-stage diabetic retinopathy. Sci Rep 7:44985. https://doi.org/10.1038/srep44985. (PMID: 10.1038/srep44985283223235359562)
      Gábriel R (2013) Neuropeptides and diabetic retinopathy. Br J Clin Pharmacol 75(5):1189–1201. https://doi.org/10.1111/bcp.12003. (PMID: 10.1111/bcp.1200323043302)
      Gillies MC, Sutter FK, Simpson JM, Larsson J, Ali H, Zhu M (2006) Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology 113(9):1533–1538. https://doi.org/10.1016/j.ophtha.2006.02.065. (PMID: 10.1016/j.ophtha.2006.02.06516828501)
      Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy: a systematic review. JAMA 298(8):902–916. https://doi.org/10.1001/jama.298.8.902. (PMID: 10.1001/jama.298.8.90217712074)
      Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y. (PMID: 10.1016/0092-8674(93)90529-y8252621)
      Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5. (PMID: 10.1016/s0092-8674(04)00045-514744438)
      Liu X, Lv X, Yang Q, Jin H, Zhou W, Fan Q (2018) MicroRNA-29a functions as a tumor suppressor and increases cisplatin sensitivity by targeting NRAS in lung cancer. Technol Cancer Res Treat 17:1533033818758905. https://doi.org/10.1177/1533033818758905. (PMID: 10.1177/1533033818758905294959185843100)
      Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974. https://doi.org/10.1038/onc.2008.274. (PMID: 10.1038/onc.2008.27418836476)
      Kovacs KB, Lumayag S, Cowan C, Xu S (2011) MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 52(7):4402–4409. https://doi.org/10.1167/iovs.10-6879. (PMID: 10.1167/iovs.10-687921498619)
      Xourgia E, Papazafiropoulou A, Melidonis A (2018) Circulating microRNAs as biomarkers for diabetic neuropathy: a novel approach. World J Exp Med 8(3):18–23. https://doi.org/10.5493/wjem.v8.i3.18. (PMID: 10.5493/wjem.v8.i3.18305960306305524)
      Massaro JD, Polli CD, Costa e Silva M et al (2019) Post-transcriptional markers associated with clinical complications in Type 1 and Type 2 diabetes mellitus. Mol Cell Endocrinol 490:1–14. https://doi.org/10.1016/j.mce.2019.03.008. (PMID: 10.1016/j.mce.2019.03.00830926524)
      Ou C, Sun Z, He X et al (2019) Targeting YAP1/LINC00152/FSCN1 signaling axis prevents the progression of colorectal cancer. Adv Sci (Weinh) 7(3):1901380. https://doi.org/10.1002/advs.201901380. (PMID: 10.1002/advs.20190138032042551)
      Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-8255162814302049)
      Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
      Sticht C, De La Torre C, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE 13(10):e0206239. https://doi.org/10.1371/journal.pone.0206239. (PMID: 10.1371/journal.pone.0206239303358626193719)
      Chang L, Zhou G, Soufan O, Xia J (2020) miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 48(W1):W244–W251. https://doi.org/10.1093/nar/gkaa467. (PMID: 10.1093/nar/gkaa467324845397319552)
      Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–252. (PMID: 10.1002/0470857897.ch812539951)
      Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6. (PMID: 10.1038/s41467-019-09234-6309443136447622)
      Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8 Suppl 4(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11.
      Aguda BD (2013) Modeling microRNA-transcription factor networks in cancer. Adv Exp Med Biol 774:149–167. https://doi.org/10.1007/978-94-007-5590-1_9. (PMID: 10.1007/978-94-007-5590-1_923377973)
      Kashim RM, Newton P, Ojo O (2018) Diabetic retinopathy screening: a systematic review on patients' non-attendance. Int J Environ Res Public Health 15(1):157. https://doi.org/10.3390/ijerph15010157. (PMID: 10.3390/ijerph15010157293512075800256)
      Mastropasqua R, Toto L, Cipollone F, Santovito D, Carpineto P, Mastropasqua L (2014) Role of microRNAs in the modulation of diabetic retinopathy. Prog Retin Eye Res 43:92–107. https://doi.org/10.1016/j.preteyeres.2014.07.003. (PMID: 10.1016/j.preteyeres.2014.07.00325128741)
      Kim HW, Lee JE, Cha JJ et al (2013) Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 154(9):3366–3376. https://doi.org/10.1210/en.2012-2276. (PMID: 10.1210/en.2012-227623825123)
      Cancilla B, Davies A, Cauchi JA, Risbridger GP, Bertram JF (2001) Fibroblast growth factor receptors and their ligands in the adult rat kidney. Kidney Int 60(1):147–155. https://doi.org/10.1046/j.1523-1755.2001.00781.x. (PMID: 10.1046/j.1523-1755.2001.00781.x11422746)
      Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22(4):201–207. https://doi.org/10.1016/s0165-6147(00)01676-x. (PMID: 10.1016/s0165-6147(00)01676-x11282421)
      Potenza MA, Gagliardi S, Nacci C, Carratu’ MR, Montagnani M (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16(1):94–112. https://doi.org/10.2174/092986709787002853. (PMID: 10.2174/09298670978700285319149564)
      Graupera M, Potente M (2013) Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res 319(9):1348–1355. https://doi.org/10.1016/j.yexcr.2013.02.021. (PMID: 10.1016/j.yexcr.2013.02.02123500680)
      Tang L, Zhang C, Lu L et al (2022) Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol 13:831660. https://doi.org/10.3389/fimmu.2022.831660. (PMID: 10.3389/fimmu.2022.831660353710228964465)
      Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136(4):642–655. https://doi.org/10.1016/j.cell.2009.01.035. (PMID: 10.1016/j.cell.2009.01.035192398862675692)
      Behl T, Kaur I, Goel H, Kotwani A (2017) Significance of the antiangiogenic mechanisms of thalidomide in the therapy of diabetic retinopathy. Vascul Pharmacol 92:6–15. https://doi.org/10.1016/j.vph.2015.07.003. (PMID: 10.1016/j.vph.2015.07.00326196302)
      Chen L, Fu C, Zhang Q, He C, Zhang F, Wei Q (2020) The role of CD44 in pathological angiogenesis. FASEB J 34(10):13125–13139. https://doi.org/10.1096/fj.202000380RR. (PMID: 10.1096/fj.202000380RR32830349)
      Lin CC, Kuo IY, Wu LT et al (2020) Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression. Theranostics 10(22):10001–10015. https://doi.org/10.7150/thno.47491. (PMID: 10.7150/thno.47491329293307481419)
      Arya KR, Bharath Chand RP, Abhinand CS, Nair AS, Oommen OV, Sudhakaran PR (2021) Identification of hub genes and key pathways associated with anti-VEGF resistant glioblastoma using gene expression data analysis. Biomolecules 11(3):403. https://doi.org/10.3390/biom11030403. (PMID: 10.3390/biom11030403338032248000064)
      Del Carmen S, Corchete LA, Gervas R et al (2020) Prognostic implications of EGFR protein expression in sporadic colorectal tumors: correlation with copy number status, mRNA levels and miRNA regulation. Sci Rep 10(1):4662. https://doi.org/10.1038/s41598-020-61688-7. (PMID: 10.1038/s41598-020-61688-7321701467070091)
      Xiang X, Zhuang L, Chen H et al (2019) Everolimus inhibits the proliferation and migration of epidermal growth factor receptor-resistant lung cancer cells A549 via regulating the microRNA-4328/phosphatase and tensin homolog signaling pathway. Oncol Lett 18(5):5269–5276. https://doi.org/10.3892/ol.2019.10887. (PMID: 10.3892/ol.2019.10887316120366781784)
      Patel B, Hiscott P, Charteris D, Mather J, McLeod D, Boulton M (1994) Retinal and preretinal localisation of epidermal growth factor, transforming growth factor alpha, and their receptor in proliferative diabetic retinopathy. Br J Ophthalmol 78(9):714–718. https://doi.org/10.1136/bjo.78.9.714. (PMID: 10.1136/bjo.78.9.7147947554504912)
      Hajjri SN, Sadigh-Eteghad S, Mehrpour M, Moradi F, Shanehbandi D, Mehdizadeh M (2020) Beta-amyloid-dependent miRNAs as circulating biomarkers in Alzheimer’s disease: a preliminary report. J Mol Neurosci 70(6):871–877. https://doi.org/10.1007/s12031-020-01511-0. (PMID: 10.1007/s12031-020-01511-032306293)
      Bahr HI, Abdelghany AA, Galhom RA, Barakat BM, Arafa EA, Fawzy MS (2019) Duloxetine protects against experimental diabetic retinopathy in mice through retinal GFAP downregulation and modulation of neurotrophic factors. Exp Eye Res 186:107742. https://doi.org/10.1016/j.exer.2019.107742. (PMID: 10.1016/j.exer.2019.10774231344388)
      Liang T, Guo L, Liu C (2012) Genome-wide analysis of mir-548 gene family reveals evolutionary and functional implications. J Biomed Biotechnol. https://doi.org/10.1155/2012/679563. (PMID: 10.1155/2012/679563232269463514846)
      Dahiya N, Sarachana T, Kulkarni S et al (2017) miR-570 interacts with mitochondrial ATPase subunit g (ATP5L) encoding mRNA in stored platelets. Platelets 28(1):74–81. https://doi.org/10.1080/09537104.2016.1203405. (PMID: 10.1080/09537104.2016.120340527561077)
      Chen J, Hao P, Zheng T, Zhang Y (2019) miR-628 reduces prostate cancer proliferation and invasion via the FGFR2 signaling pathway. Exp Ther Med 18(2):1005–1012. https://doi.org/10.3892/etm.2019.7682. (PMID: 10.3892/etm.2019.7682313165986601141)
      Li JH, Sun SS, Fu CJ et al (2018) Diagnostic and prognostic value of microRNA-628 for cancers. J Cancer 9(9):1623–1634. https://doi.org/10.7150/jca.24193. (PMID: 10.7150/jca.24193297608015950592)
      Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105. (PMID: 10.1073/pnas.0804549105186632192492472)
      Shu J, Liu Y, Shan Y et al (2021) Deep sequencing microRNA profiles associated with wooden breast in commercial broilers. Poult Sci 100(12):101496. https://doi.org/10.1016/j.psj.2021.101496. (PMID: 10.1016/j.psj.2021.101496346956278555438)
      Takahashi K, Jia H, Takahashi S, Kato H (2021) Comprehensive miRNA and DNA microarray analyses reveal the response of hepatic miR-203 and its target gene to protein malnutrition in rats. Genes (Basel) 13(1):75. https://doi.org/10.3390/genes13010075. (PMID: 10.3390/genes1301007535052415)
      Buglyó G, Magyar Z, Romicsné Görbe É et al (2021) miRNA profiling of Hungarian regressive Wilms' tumor formalin-fixed paraffin-embedded (FFPE) samples by quantitative real-time polymerase chain reaction (RT-PCR). Med Sci Monit 27:e932731. https://doi.org/10.12659/MSM.932731. (PMID: 10.12659/MSM.932731346081098501895)
      Forga L, Goñi MJ, Ibáñez B, Cambra K, García-Mouriz M, Iriarte A (2016) Influence of age at diagnosis and time-dependent risk factors on the development of diabetic retinopathy in patients with Type 1 diabetes. J Diabetes Res 2016:9898309. https://doi.org/10.1155/2016/9898309. (PMID: 10.1155/2016/9898309272131584861784)
      Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26(5):753–767. https://doi.org/10.1016/j.molcel.2007.05.018. (PMID: 10.1016/j.molcel.2007.05.018175603772072999)
      Huwait E, Mobashir M (2022) Potential and therapeutic roles of Diosmin in human diseases. Biomedicines. 10(5):1076. https://doi.org/10.3390/biomedicines10051076. (PMID: 10.3390/biomedicines10051076356258139138579)
      Carvalho KFDS, Ferreira AAM, Barbosa NC, Alves JV, Costa RMD (2021) Atorvastatin attenuates vascular remodeling in mice with metabolic syndrome. Atorvastatina Atenua o Remodelamento Vascular em Camundongos com Síndrome Metabólica. Arq Bras Cardiol 117(4):737–747. https://doi.org/10.36660/abc.20200322. (PMID: 10.36660/abc.20200322341614198528348)
      Shima DT, Adamis AP, Ferrara N et al (1995) Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med 1(2):182–193. (PMID: 10.1007/BF0340156685290972229943)
      Niu N, Yu C, Li L et al (2018) Dihydroartemisinin enhances VEGFR1 expression through up-regulation of ETS-1 transcription factor. J Cancer 9(18):3366–3372. https://doi.org/10.7150/jca.25082. (PMID: 10.7150/jca.25082302714986160690)
      Jiang Y, Reynolds C, Xiao C et al (2007) Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J Exp Med 204(3):657–666. https://doi.org/10.1084/jem.20061943. (PMID: 10.1084/jem.20061943173394072137915)
    • Grant Information:
      81560589 the National Natural Science Foundation of China; 202105AF150015 Yunnan Provincial Science and Technology Department in China; 202201AY070001-033 Applied Basic Research Foundation of Yunnan Province; 202001AY070001-196 Applied Basic Research Foundation of Yunnan Province; 2019J1243 Scientific Research Fund of Yunnan Provincial Education Department
    • Contributed Indexing:
      Keywords: Diabetic retinopathy (DR); Diagnostic; Redictive; miRNA
    • Accession Number:
      0 (MicroRNAs)
      0 (Biomarkers)
    • Publication Date:
      Date Created: 20230331 Date Completed: 20230522 Latest Revision: 20230522
    • Publication Date:
      20230522
    • Accession Number:
      10.1007/s00592-023-02077-0
    • Accession Number:
      37002321