The Cultivation Modality and Barrier Maturity Modulate the Toxicity of Industrial Zinc Oxide and Titanium Dioxide Nanoparticles on Nasal, Buccal, Bronchial, and Alveolar Mucosa Cell-Derived Barrier Models.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Basel, Switzerland : MDPI, [2000-
    • Subject Terms:
    • Abstract:
      As common industrial by-products, airborne engineered nanomaterials are considered important environmental toxins to monitor due to their potential health risks to humans and animals. The main uptake routes of airborne nanoparticles are nasal and/or oral inhalation, which are known to enable the transfer of nanomaterials into the bloodstream resulting in the rapid distribution throughout the human body. Consequently, mucosal barriers present in the nose, buccal, and lung have been identified and intensively studied as the key tissue barrier to nanoparticle translocation. Despite decades of research, surprisingly little is known about the differences among various mucosa tissue types to tolerate nanoparticle exposures. One limitation in comparing nanotoxicological data sets can be linked to a lack of harmonization and standardization of cell-based assays, where (a) different cultivation conditions such as an air-liquid interface or submerged cultures, (b) varying barrier maturity, and (c) diverse media substitutes have been used. The current comparative nanotoxicological study, therefore, aims at analyzing the toxic effects of nanomaterials on four human mucosa barrier models including nasal (RPMI2650), buccal (TR146), alveolar (A549), and bronchial (Calu-3) mucosal cell lines to better understand the modulating effects of tissue maturity, cultivation conditions, and tissue type using standard transwell cultivations at liquid-liquid and air-liquid interfaces. Overall, cell size, confluency, tight junction localization, and cell viability as well as barrier formation using 50% and 100% confluency was monitored using trans-epithelial-electrical resistance (TEER) measurements and resazurin-based Presto Blue assays of immature (e.g., 5 days) and mature (e.g., 22 days) cultures in the presence and absence of corticosteroids such as hydrocortisone. Results of our study show that cellular viability in response to increasing nanoparticle exposure scenarios is highly compound and cell-type specific (TR146 6 ± 0.7% at 2 mM ZnO (ZnO) vs. ~90% at 2 mM TiO 2 (TiO 2 ) for 24 h; Calu3 93.9 ± 4.21% at 2 mM ZnO vs. ~100% at 2 mM TiO 2 ). Nanoparticle-induced cytotoxic effects under air-liquid cultivation conditions declined in RPMI2650, A549, TR146, and Calu-3 cells (~0.7 to ~0.2-fold), with increasing 50 to 100% barrier maturity under the influence of ZnO (2 mM). Cell viability in early and late mucosa barriers where hardly influenced by TiO 2 as well as most cell types did not fall below 77% viability when added to Individual ALI cultures. Fully maturated bronchial mucosal cell barrier models cultivated under ALI conditions showed less tolerance to acute ZnO nanoparticle exposures (~50% remaining viability at 2 mM ZnO for 24 h) than the similarly treated but more robust nasal (~74%), buccal (~73%), and alveolar (~82%) cell-based models.
    • References:
      Nature. 2020 Mar;579(7798):270-273. (PMID: 32015507)
      Arch Toxicol. 2011 Jun;85(6):695-704. (PMID: 20938647)
      Sci Rep. 2018 Aug 16;8(1):12295. (PMID: 30115982)
      Theranostics. 2020 Jul 11;10(20):8996-9031. (PMID: 32802176)
      Nanomaterials (Basel). 2021 Jan 21;11(2):. (PMID: 33494245)
      J Nanobiotechnology. 2016 Aug 20;14(1):65. (PMID: 27544212)
      Nanomaterials (Basel). 2022 Apr 07;12(8):. (PMID: 35457956)
      Br J Ind Med. 1980 Nov;37(4):337-62. (PMID: 7004477)
      Biol Trace Elem Res. 2011 Jun;141(1-3):3-15. (PMID: 20506001)
      Toxicol In Vitro. 2018 Mar;47:137-146. (PMID: 29155131)
      Nanomaterials (Basel). 2021 Jun 16;11(6):. (PMID: 34208428)
      Mini Rev Med Chem. 2016;16(9):762-9. (PMID: 26996620)
      Toxicol In Vitro. 2021 Sep;75:105178. (PMID: 33905840)
      Exp Toxicol Pathol. 2005 Jul;57 Suppl 1:233-8. (PMID: 16092731)
      PLoS One. 2016 Oct 25;11(10):e0165225. (PMID: 27780255)
      J Neurochem. 2002 Feb;80(4):667-77. (PMID: 11841574)
      Chem Res Toxicol. 2011 Mar 21;24(3):303-13. (PMID: 21341804)
      J Adv Res. 2017 Nov 02;9:1-16. (PMID: 30046482)
      F1000Res. 2018 Mar 26;7:376. (PMID: 29636906)
      Front Bioeng Biotechnol. 2021 Jan 29;9:616830. (PMID: 33634087)
      Cell Death Dis. 2013 Mar 21;4:e549. (PMID: 23519118)
      Eur J Pharm Biopharm. 2010 Feb;74(2):290-7. (PMID: 19733661)
      Eur J Pharm Biopharm. 2016 Oct;107:223-33. (PMID: 27418393)
      Small. 2013 Feb 11;9(3):387-92. (PMID: 23090781)
      Nanomedicine (Lond). 2020 Apr;15(9):927-946. (PMID: 32162999)
      Part Fibre Toxicol. 2009 Dec 16;6:32. (PMID: 20015351)
      Nanoscale Res Lett. 2017 Dec;12(1):478. (PMID: 28774157)
      Int J Pharm. 2000 Nov 4;208(1-2):1-11. (PMID: 11064206)
      Lab Chip. 2015 Dec 21;15(24):4542-54. (PMID: 26524977)
      J Aerosol Med. 2006 Fall;19(3):392-405. (PMID: 17034314)
      Biosensors (Basel). 2021 Dec 31;12(1):. (PMID: 35049648)
      J Appl Toxicol. 2009 Jan;29(1):69-78. (PMID: 18756589)
      ACS Omega. 2022 Apr 14;7(16):13841-13852. (PMID: 35559158)
      Int J Nanomedicine. 2017 Nov 01;12:8085-8099. (PMID: 29138564)
      Toxicol Pathol. 2006;34(3):252-69. (PMID: 16698724)
      J Pharm Pharmacol. 2012 Nov;64(11):1621-30. (PMID: 23058049)
      Am J Respir Cell Mol Biol. 2008 Feb;38(2):143-52. (PMID: 17690331)
      Colloids Surf B Biointerfaces. 2010 Mar 1;76(1):145-50. (PMID: 19926459)
      J Environ Sci Health A Tox Hazard Subst Environ Eng. 2006;41(12):2699-711. (PMID: 17114101)
      Mol Ther Methods Clin Dev. 2020 Nov 20;20:237-246. (PMID: 33426150)
      Hum Exp Toxicol. 2013 Feb;32(2):153-66. (PMID: 23111874)
      J Drug Target. 2002 Feb;10(1):31-40. (PMID: 11996084)
      Int J Mol Sci. 2020 Jul 09;21(14):. (PMID: 32659965)
      Toxicol In Vitro. 2020 Mar;63:104714. (PMID: 31706036)
      Toxics. 2017 Oct 17;5(4):. (PMID: 29051461)
      Am J Physiol. 1994 May;266(5 Pt 1):L493-501. (PMID: 7515578)
      Arch Pharm Res. 2016 Mar;39(3):359-69. (PMID: 26746641)
      Toxicol Res (Camb). 2019 Nov 19;8(6):1016-1027. (PMID: 32153768)
      J Natl Cancer Inst Monogr. 2001;(29):7-15. (PMID: 11694559)
      Int J Nanomedicine. 2018 Nov 27;13:8037-8049. (PMID: 30568444)
      Biomed Microdevices. 2014 Apr;16(2):277-85. (PMID: 24337430)
      Environ Health Perspect. 2010 Jul;118(7):982-7. (PMID: 20194077)
      Int J Nanomedicine. 2017 Jun 06;12:4241-4256. (PMID: 28652730)
      Environ Sci Pollut Res Int. 2015 Apr;22(7):5519-30. (PMID: 25339530)
      Redox Biol. 2021 Oct;46:102092. (PMID: 34418598)
      J R Soc Interface. 2010 Jun 6;7 Suppl 3:S331-40. (PMID: 20356875)
      Anal Chem. 2018 Mar 20;90(6):3651-3655. (PMID: 29478320)
      Front Pharmacol. 2018 Mar 20;9:253. (PMID: 29615914)
      Toxicol Lett. 2011 Feb 5;200(3):201-10. (PMID: 21130147)
      Pharm Res. 2015 Feb;32(2):665-79. (PMID: 25145337)
      Eur J Oral Sci. 1999 Apr;107(2):138-46. (PMID: 10232463)
      Nanotechnol Sci Appl. 2012 Aug 15;5:61-71. (PMID: 24198497)
      Mater Sci Eng C Mater Biol Appl. 2015;52:204-11. (PMID: 25953559)
      J Vis Exp. 2020 May 13;(159):. (PMID: 32478724)
      Exp Toxicol Pathol. 2001 Oct;53(5):373-86. (PMID: 11817107)
      Nanomaterials (Basel). 2020 Nov 28;10(12):. (PMID: 33260672)
      Lab Invest. 2011 Mar;91(3):363-78. (PMID: 21079581)
      Biochem Biophys Rep. 2021 Apr 10;26:100991. (PMID: 33912692)
      Nanomaterials (Basel). 2020 Dec 29;11(1):. (PMID: 33383962)
      Heliyon. 2021 Mar 25;7(3):e06577. (PMID: 33855242)
      Exp Toxicol Pathol. 2005 Jul;57 Suppl 1:189-204. (PMID: 16092727)
      Biosensors (Basel). 2015 Nov 27;5(4):736-49. (PMID: 26633532)
      Tissue Barriers. 2020 Apr 2;8(2):1748459. (PMID: 32314665)
    • Grant Information:
      Feasibility Study 639 Austrian Ministry of Defense (BMLV)
    • Contributed Indexing:
      Keywords: barrier health; barrier integrity; human mucosa models; nanotoxicology; titanium dioxide; zinc oxide
    • Accession Number:
      SOI2LOH54Z (Zinc Oxide)
      15FIX9V2JP (titanium dioxide)
      D1JT611TNE (Titanium)
    • Publication Date:
      Date Created: 20230329 Date Completed: 20230330 Latest Revision: 20230331
    • Publication Date:
      20230331
    • Accession Number:
      PMC10056597
    • Accession Number:
      10.3390/ijms24065634
    • Accession Number:
      36982705