Destabilization of microrchidia family CW-type zinc finger 2 via the cyclin-dependent kinase 1-chaperone-mediated autophagy pathway promotes mitotic arrest and enhances cancer cellular sensitivity to microtubule-targeting agents.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 101597971 Publication Model: Print Cited Medium: Internet ISSN: 2001-1326 (Electronic) Linking ISSN: 20011326 NLM ISO Abbreviation: Clin Transl Med Subsets: MEDLINE
    • Publication Information:
      Publication: 2020- : [Hoboken, NJ] : Wiley
      Original Publication: Heidelberg : Springer-Verlag
    • Subject Terms:
    • Abstract:
      Background: Microtubule-targeing agents (MTAs), such as paclitaxel (PTX) and vincristine (VCR), kill cancer cells through activtion of the spindle assembly checkpoint (SAC) and induction of mitotic arrest, but the development of resistance poses significant clinical challenges.
      Methods: Immunoblotting and RT-qPCR were used to investigate potential function and related mechanism of MORC2. Flow cytometry analyses were carried out to determine cell cycle distribution and apoptosis. The effect of MORC2 on cellular sensitivity to PTX and VCR was determined by immunoblotting, flow cytometry, and colony formation assays. Immunoprecipitation assays and immunofluorescent staining were utilized to investigate protein-protein interaction and protein co-localization.
      Results: Here, we identified microrchidia family CW-type zinc finger 2 (MORC2), a poorly characterized oncoprotein, as a novel regulator of SAC activation, mitotic progression, and resistance of cancer cells to PTX and VCR. Mechanically, PTX and VCR activate cyclin-dependent kinase 1, which in turn induces MORC2 phosphorylation at threonine 717 (T717) and T733. Phosphorylated MORC2 enhances its interation with HSPA8 and LAMP2A, two essential components of the chaperone-mediated autophagy (CMA) mechinery, resulting in its autophagic degradation. Degradation of MORC2 during mitosis leads to SAC activation through stabilizing anaphase promoting complex/cyclosome activator protein Cdc20 and facilitating mitotic checkpoint complex assembly, thus contributing to mitotic arrest induced by PTX and VCR. Notably, knockdown of MORC2 promotes mitotic arrest induced by PTX and VCR and enhances the sensitivity of cancer cells to PTX and VCR.
      Conclusions: Collectively, these findings unveil a previously unrecognized function and regulatory mechanism of MORC2 in mitotic progression and resistance of cancer cells to MTAs. These results also provide a new clue for developing combined treatmentstrategy by targeting MORC2 in combination with MTAs against human cancer.
      (© 2023 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.)
    • References:
      Jackson J, Patrick D, Dar M, Huang P. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer. 2007;7(2):107-117. doi:10.1038/nrc2049.
      Jordan M, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253-265. doi:10.1038/nrc1317.
      Yu H. Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol. 2002;14(6):706-714. doi:10.1016/s0955-0674(02)00382-4.
      Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: when blocking the exit becomes a solution. Cancer Lett. 2019;440-441:64-81. doi:10.1016/j.canlet.2018.10.005.
      Rieder C, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell. 2004;7(5):637-651. doi:10.1016/j.devcel.2004.09.002.
      Musacchio A, Salmon E. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 2007;8(5):379-393. doi:10.1038/nrm2163.
      Cleveland D, Mao Y, Sullivan K. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. 2003;112(4):407-421. doi:10.1016/s0092-8674(03)00115-6.
      Li Y, Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science. 1996;274(5285):246-248. doi:10.1126/science.274.5285.246.
      Taylor S, McKeon F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell. 1997;89(5):727-735. doi:10.1016/s0092-8674(00)80255-x.
      Kallio M, Weinstein J, Daum J, Burke D, Gorbsky G. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J Cell Biol. 1998;141(6):1393-1406. doi:10.1083/jcb.141.6.1393.
      Clute P, Pines J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol. 1999;1(2):82-87. doi:10.1038/10049.
      Uhlmann F. Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO Rep. 2001;2(6):487-492. doi:10.1093/embo-reports/kve113.
      Peters J. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol. 2006;7(9):644-656. doi:10.1038/nrm1988.
      Miao S, Wu K, Zhang B, et al. Synuclein γ compromises spindle assembly checkpoint and renders resistance to antimicrotubule drugs. Mol Cancer Ther. 2014;13(3):699-713. doi:10.1158/1535-7163.Mct-13-0671.
      Matson D, Stukenberg P. Spindle poisons and cell fate: a tale of two pathways. Mol Interventions. 2011;11(2):141-150. doi:10.1124/mi.11.2.12.
      Sudo T, Nitta M, Saya H, Ueno N. Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res. 2004;64(7):2502-2508. doi:10.1158/0008-5472.can-03-2013.
      Henriques AC, Silva PMA, Sarmento B, Bousbaa H. Antagonizing the spindle assembly checkpoint silencing enhances paclitaxel and Navitoclax-mediated apoptosis with distinct mechanistic. Sci Rep. 2021;11(1):4139. doi:10.1038/s41598-021-83743-7.
      Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009;28(33):2925-2939. doi:10.1038/onc.2009.170.
      Graña X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995;11(2):211-219.
      Santamaría D, Barrière C, Cerqueira A, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448(7155):811-815. doi:10.1038/nature06046.
      Larochelle S, Pandur J, Fisher R, Salz H, Suter B. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev. 1998;12(3):370-381. doi:10.1101/gad.12.3.370.
      Fisher R, Morgan D. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell. 1994;78(4):713-724. doi:10.1016/0092-8674(94)90535-5.
      Morgan D. Principles of CDK regulation. Nature. 1995;374(6518):131-134. doi:10.1038/374131a0.
      Enserink J, Kolodner R. An overview of Cdk1-controlled targets and processes. Cell Division. 2010;5:11. doi:10.1186/1747-1028-5-11.
      Chang WL, Yu CC, Chen CS, Guh JH. Tubulin-binding agents down-regulate matrix metalloproteinase-2 and -9 in human hormone-refractory prostate cancer cells - a critical role of Cdk1 in mitotic entry. Biochem Pharmacol. 2015;94(1):12-21. doi:10.1016/j.bcp.2015.01.005.
      Donaldson K, Goolsby G, Kiener P, Wahl A. Activation of p34cdc2 coincident with taxol-induced apoptosis. Cell Growth Differ. 1994;5(10):1041-1050.
      Liu N, Lee C, Swigut T, et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature. 2018;553(7687):228-232. doi:10.1038/nature25179.
      Douse CH, Bloor S, Liu Y, et al. Neuropathic MORC2 mutations perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms. Research Support, Non-U.S. Gov't. Nat Commun. 2018;9(1):651. doi:10.1038/s41467-018-03045-x.
      Hagelkruys A, Horrer M, Taubenschmid-Stowers J, et al. The HUSH complex controls brain architecture and protocadherin fidelity. Sci Adv. 2022;8(44):eabo7247. doi:10.1126/sciadv.abo7247.
      Li DQ, Nair SS, Ohshiro K, et al. MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response. Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural. Cell Rep. 2012;2(6):1657-1669. doi:10.1016/j.celrep.2012.11.018.
      Liu HY, Liu YY, Zhang YL, Ning Y, Zhang FL, Li DQ. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal. 2022;20(1):127. doi:10.1186/s12964-022-00932-1.
      Liu H, Liu Y, Yang F, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020;48(7):3638-3656. doi:10.1093/nar/gkaa130.
      Xie HY, Zhang TM, Hu SY, Shao ZM, Li DQ. Dimerization of MORC2 through its C-terminal coiled-coil domain enhances chromatin dynamics and promotes DNA repair. Research Support, Non-U.S. Gov't. Cell Commun Signal. 2019;17(1):160. doi:10.1186/s12964-019-0477-5.
      Zhang L, Li D. MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Res. 2019;47(16):8502-8520. doi:10.1093/nar/gkz545.
      Sevilla T, Lupo V, Martinez-Rubio D, et al. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease. Research Support, Non-U.S. Gov't. Brain. 2016;139(Pt 1):62-72. doi:10.1093/brain/awv311.
      Albulym OM, Kennerson ML, Harms MB, et al. MORC2 mutations cause axonal Charcot-Marie-Tooth disease with pyramidal signs. Case Reports Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't. Ann Neurol. 2016;79(3):419-427. doi:10.1002/ana.24575.
      Lassuthova P, Safka Brozkova D, Krutova M, et al. Severe axonal Charcot-Marie-Tooth disease with proximal weakness caused by de novo mutation in the MORC2 gene. Letter Research Support, Non-U.S. Gov't Comment. Brain. 2016;139(Pt 4):e26. doi:10.1093/brain/awv411.
      Hyun YS, Hong YB, Choi BO, Chung KW. Clinico-genetics in Korean Charcot-Marie-Tooth disease type 2Z with MORC2 mutations. Letter Research Support, Non-U.S. Gov't Comment. Brain. 2016;139(Pt 7):e40. doi:10.1093/brain/aww082.
      Zhao X, Li X, Hu Z, et al. MORC2 mutations in a cohort of Chinese patients with Charcot-Marie-Tooth disease type 2. Letter. Brain. 2016;139(Pt 10):e56. doi:10.1093/brain/aww156.
      Schottmann G, Wagner C, Seifert F, Stenzel W, Schuelke M. MORC2 mutation causes severe spinal muscular atrophy-phenotype, cerebellar atrophy, and diaphragmatic paralysis. Letter Comment. Brain. 2016;139(Pt 12):e70. doi:10.1093/brain/aww252.
      Ando M, Okamoto Y, Yoshimura A, et al. Clinical and mutational spectrum of Charcot-Marie-Tooth disease type 2Z caused by MORC2 variants in Japan. Eur J Neurol. 2017;24(10):1274-1282. doi:10.1111/ene.13360.
      Sivera R, Lupo V, Frasquet M, et al. Charcot-Marie-Tooth disease due to MORC2 mutations in Spain. Eur J Neurol. 2021;28(9):3001-3011. doi:10.1111/ene.15001.
      Mirchi A, Derksen A, Tran LT, et al. A Cockayne-like phenotype resulting from a de novo variant in MORC2: expanding the phenotype of MORC2-related disorders. Neurogenetics. 2022;23(4):271-274. doi:10.1007/s10048-022-00697-2.
      Guillen Sacoto MJ, Tchasovnikarova IA, Torti E, et al. De Novo variants in the ATPase module of MORC2 cause a neurodevelopmental disorder with growth retardation and variable craniofacial dysmorphism. Am J Hum Genet. 2020;107(2):352-363. doi:10.1016/j.ajhg.2020.06.013.
      Jacquier A, Ribault S, Mendes M, et al. Expanding the phenotypic variability of MORC2 gene mutations: from Charcot-Marie-Tooth disease to late-onset pure motor neuropathy. Hum Mutat. 2022;43(12):1898-1908. doi:10.1002/humu.24445.
      Zhang F, Cao J, Xie H, et al. Cancer-associated MORC2-mutant M276I regulates an hnRNPM-mediated CD44 splicing switch to promote invasion and metastasis in triple-negative breast cancer. Cancer Res. 2018;78(20):5780-5792. doi:10.1158/0008-5472.Can-17-1394.
      Ding Q, Zhang L, Wang B, et al. Aberrant high expression level of MORC2 is a common character in multiple cancers. Hum Pathol. 2018;76:58-67. doi:10.1016/j.humpath.2018.03.011.
      Liu J, Zhang Q, Ruan B, et al. MORC2 regulates C/EBPalpha-mediated cell differentiation via sumoylation. Cell Death Differ. Oct 2019;26(10):1905-1917. doi:10.1038/s41418-018-0259-4.
      Liu J, Shao Y, He Y, et al. MORC2 promotes development of an aggressive colorectal cancer phenotype through inhibition of NDRG1. Cancer Sci. 2019;110(1):135-146. doi:10.1111/cas.13863.
      Wang T, Qin ZY, Wen LZ, et al. Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death Differ. 2018;25(12):2086-2100. doi:10.1038/s41418-018-0095-6.
      Liu Y, Liu H, Yu T, et al. O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-β signaling to breast cancer progression. Cell Death Differ. 2022;29(4):861-873. doi:10.1038/s41418-021-00901-0.
      Liao XH, Zhang Y, Dong WJ, Shao ZM, Li DQ. Chromatin remodeling protein MORC2 promotes breast cancer invasion and metastasis through a PRD domain-mediated interaction with CTNND1. Oncotarget. 2017;8(58):97941-97954. doi:10.18632/oncotarget.18556.
      Gao Y, Li T, Chang Y, et al. Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol. 2011;13(8):924-933. doi:10.1038/ncb2287.
      Li D, Ohshiro K, Reddy S, et al. E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proc Nat Acad Sci USA. 2009;106(41):17493-17498. doi:10.1073/pnas.0908027106.
      Zur A, Brandeis M. Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. Embo J. 2002;21(17):4500-4510. doi:10.1093/emboj/cdf452.
      Yang F, Xie HY, Yang LF, et al. Stabilization of MORC2 by estrogen and antiestrogens through GPER1- PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy. 2020;16(6):1061-1076. doi:10.1080/15548627.2019.1659609.
      Cuervo A, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24(1):92-104. doi:10.1038/cr.2013.153.
      Nigg E. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol. 2001;2(1):21-32. doi:10.1038/35048096.
      Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122. doi:10.1186/gb4184.
      Dephoure N, Zhou C, Villén J, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105(31):10762-10767. doi:10.1073/pnas.0805139105.
      Shiromizu T, Adachi J, Watanabe S, et al. Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project. J Proteome Res. 2013;12(6):2414-2421. doi:10.1021/pr300825v.
      Mertins P, Mani D, Ruggles K, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55-62. doi:10.1038/nature18003.
      Hendzel M, Wei Y, Mancini M, et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997;106(6):348-360. doi:10.1007/s004120050256.
      Reinhold W, Sunshine M, Liu H, et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72(14):3499-3511. doi:10.1158/0008-5472.Can-12-1370.
      Wallace N, Belancio V, Deininger P. L1 mobile element expression causes multiple types of toxicity. Gene. 2008;419:75-81. doi:10.1016/j.gene.2008.04.013.
      Malki S, van der Heijden G, O'Donnell K, Martin S, Bortvin A. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell. 2014;29(5):521-533. doi:10.1016/j.devcel.2014.04.027.
      Yu L, Lang Y, Hsu C, et al. Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene. 2022;41(4):489-501. doi:10.1038/s41388-021-02106-8.
      Yuan F, Jin X, Li D, et al. ULK1 phosphorylates Mad1 to regulate spindle assembly checkpoint. Nucleic Acids Res. 2019;47(15):8096-8110. doi:10.1093/nar/gkz602.
      Skowyra A, Allan LA, Saurin AT, Clarke PR. USP9X limits mitotic checkpoint complex turnover to strengthen the spindle assembly checkpoint and guard against chromosomal instability. Cell Rep. 2018;23(3):852-865. doi:10.1016/j.celrep.2018.03.100.
      Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10(3):194-204. doi:10.1038/nrc2803.
      Perez E. Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther. 2009;8(8):2086-2095. doi:10.1158/1535-7163.Mct-09-0366.
      Abu Samaan T, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12). doi:10.3390/biom9120789.
      Liu X, Jiang W, Ma D, et al. SYTL4 downregulates microtubule stability and confers paclitaxel resistance in triple-negative breast cancer. Theranostics. 2020;10(24):10940-10956. doi:10.7150/thno.45207.
      Ferrandina G, Zannoni G, Martinelli E, et al. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res. 2006;12(9):2774-2779. doi:10.1158/1078-0432.Ccr-05-2715.
      Pan Z, Ding Q, Guo Q, et al. MORC2, a novel oncogene, is upregulated in liver cancer and contributes to proliferation, metastasis and chemoresistance. Int J Oncol. 2018;53(1):59-72. doi:10.3892/ijo.2018.4333.
      Wee Z, Yatim S, Kohlbauer V, et al. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel. Nat Commun. 2015;6:8746. doi:10.1038/ncomms9746.
      Wang S, Hung C, Chuang J, Chang W, Hsu T, Hung J. Phosphorylation of p300 increases its protein degradation to enhance the lung cancer progression. Biochim Biophys Acta. 2014;1843(6):1135-1149. doi:10.1016/j.bbamcr.2014.02.001.
      Yu L, Shang ZF, Abdisalaam S, et al. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments. Nucleic Acids Res. 2016;44(18):8842-8854. doi:10.1093/nar/gkw746.
      Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T. Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol. 2003;163(3):1109-1116. doi:10.1016/s0002-9440(10)63470-0.
      Chabalier C, Lamare C, Racca C, Privat M, Valette A, Larminat F. BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle (Georgetown, Tex). 2006;5(9):1001-1007. doi:10.4161/cc.5.9.2726.
      Engel K, Rudelius M, Slawska J, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8(8):851-862. doi:10.15252/emmm.201506047.
    • Contributed Indexing:
      Keywords: MORC2; chaperone-mediated autophagy; cyclin-dependent kinase 1; microtubule-targeting agents; mitotic arrest; spindle assembly checkpoint
    • Accession Number:
      EC 2.7.11.22 (CDC2 Protein Kinase)
      0 (Cell Cycle Proteins)
      0 (MORC2 protein, human)
      P88XT4IS4D (Paclitaxel)
      0 (Transcription Factors)
    • Publication Date:
      Date Created: 20230327 Date Completed: 20230329 Latest Revision: 20230406
    • Publication Date:
      20240829
    • Accession Number:
      PMC10040724
    • Accession Number:
      10.1002/ctm2.1210
    • Accession Number:
      36967563