Peptide Models of the Cytoplasmic Tail of Influenza A/H1N1 Virus Hemagglutinin Expand Understanding its pH-Dependent Modes of Interaction with Matrix Protein M1.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 101212092 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1875-8355 (Electronic) Linking ISSN: 15723887 NLM ISO Abbreviation: Protein J Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Dordrecht : Springer
      Original Publication: Dordrecht, The Netherlands ; New York : Kluwer Academic/Plenum, c2004-
    • Subject Terms:
    • Abstract:
      Influenza A virus hemagglutinin (HA) is a major virus antigen. No cryo-electron microscopy or X-ray data can be obtained for the HA intraviral (cytoplasmic) domain (CT) post-translationally modified with long fatty acid residues bound to three highly conserved cysteines. We recently proposed a model of HA CT of Influenza A/H1N1 virus possessing an antiparallel beta structure based on the experimental secondary structure analysis of four 14-15 amino acid long synthetic peptides, corresponding to the HA CT sequence, with free or acetaminomethylated cysteines. To dispel doubts about possible non-specific "amyloid-like" aggregation of those synthetic peptides in phosphate buffer solution, we have determined the order of oligomers based on blue native gel electrophoresis, membrane filtration, fluorescence spectroscopy and molecular modeling approaches. We have found that unmodified peptides form only low molecular weight oligomers, while modified peptides form both oligomers of low order similar to those found for unmodified peptides and high order conglomerates, which however are not of beta-amyloid-like fold. This study confirms that the beta structure previously detected by circular dichroism spectroscopy analysis is more likely the result of intrinsic propensity of the HA CT amino acid sequence than the consequence of aggregation. The structures of low order oligomers of the synthetic peptides were used for in silico experiments on modeling of HA CT interactions with matrix protein M1 at physiological and acidic pH levels and revealed two different areas of binding. Finally, tripeptides capable of blocking interactions between HA CT and M1 were proposed.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235. (PMID: 10.1093/nar/28.1.23510592235102472)
      Khrustalev VV, Kordyukova LV, Arutyunyan AM, Poboinev VV, Khrustaleva TA, Stojarov AN, Baratova LA, Sapon AS, Lugin VG (2020) The cytoplasmic tail of influenza A/H1N1 virus hemagglutinin is β-structural. J Biomol Struct Dyn 40:4642–4661. https://doi.org/10.1080/07391102.2020.1860827. (PMID: 10.1080/07391102.2020.186082733317396)
      Shishkov AV, Goldanskii VI, Baratova LA, Fedorova NV, Ksenofontov AL, Zhirnov OP, Galkin AV (1999) The in situ spatial arrangement of the influenza a virus matrix protein M1 assessed by tritium bombardment. PNAS 96:7827–7830. https://doi.org/10.1073/pnas.96.14.7827. (PMID: 10.1073/pnas.96.14.78271039390622146)
      Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV (2019) Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 37:671–690. https://doi.org/10.1080/07391102.2018.1436089. (PMID: 10.1080/07391102.2018.143608929388479)
      Sha B, Luo M (1997) Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat Struct Biol 4:239–244. https://doi.org/10.1038/nsb0397-239. (PMID: 10.1038/nsb0397-2399164466)
      Harris A, Forouhar F, Qiu S, Sha B, Luo M (2001) The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289:34–44. https://doi.org/10.1006/viro.2001.1119. (PMID: 10.1006/viro.2001.111911601915)
      Arzt S, Baudin F, Barge A, Timmins P, Burmeister WP, Ruigrok RW (2001) Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology 279:439–446. https://doi.org/10.1006/viro.2000.0727. (PMID: 10.1006/viro.2000.072711162800)
      Ksenofontov AL, Dobrov EN, Fedorova NV, Radiukhin VA, Badun GA, Arutiunian AM, Bogacheva EN, Baratova LA (2011) Disordered regions in C-domain structure of influenza virus M1 protein. Mol Biol (Mosk) 45:689–696 Article in Russian. (PMID: 10.1134/S002689331103007121954602)
      Shishkov A, Bogacheva E, Fedorova N, Ksenofontov A, Badun G, Radyukhin V, Lukashina E, Serebryakova M, Dolgov A, Chulichkov A, Dobrov E, Baratova L (2011) Spatial structure peculiarities of influenza a virus matrix M1 protein in an acidic solution that simulates the internal lysosomal medium. FEBS J 278:4905–4916. https://doi.org/10.1111/j.1742-4658.2011.08392.x. (PMID: 10.1111/j.1742-4658.2011.08392.x21985378)
      Shtykova EV, Baratova LA, Fedorova NV, Radyukhin VA, Ksenofontov AL, Volkov VV, Shishkov AV, Dolgov AA, Shilova LA, Batishchev OV, Jeffries CM, Svergun DI (2013) Structural analysis of influenza a virus matrix protein M1 and its self-assemblies at low pH. PLoS ONE 8:e82431. https://doi.org/10.1371/journal.pone.0082431. (PMID: 10.1371/journal.pone.0082431243581823865061)
      Shtykova EV, Dadinova LA, Fedorova NV, Golanikov AE, Bogacheva EN, Ksenofontov AL, Baratova LA, Shilova LA, Tashkin VY, Galimzyanov TR, Jeffries CM, Svergun DI, Batishchev OV (2017) Influenza virus matrix protein M1 preserves its conformation with pH, changing multimerization state at the priming stage due to electrostatics. Sci Rep 7:N16793. https://doi.org/10.1038/s41598-017-16986-y. (PMID: 10.1038/s41598-017-16986-y)
      Hofer CT (2019) Structural determinants of the interaction between influenza a virus matrix protein M1 and lipid membranes. Biochim Biophys Acta Biomembr 1861:1123–1134. https://doi.org/10.1016/j.bbamem.2019.03.013. (PMID: 10.1016/j.bbamem.2019.03.01330902626)
      Kordyukova LV, Serebryakova MV, Baratova LA, Veit M (2008) S acylation of the hemagglutinin of influenza viruses: mass spectrometry reveals site-specific attachment of stearic acid to a transmembrane cysteine. J Virol 82:9288–9292. https://doi.org/10.1128/JVI.00704-08. (PMID: 10.1128/JVI.00704-08185960922546910)
      Mineev KS, Lyukmanova EN, Krabben L, Serebryakova MV, Shulepko MA, Arseniev AS, Kordyukova LV, Veit M (2013) Structural investigation of influenza virus hemagglutinin membrane-anchoring peptide. Protein Eng Des Sel 26:547–552. https://doi.org/10.1093/protein/gzt034. (PMID: 10.1093/protein/gzt03423873663)
      Nault L, Vendrely C, Bréchet Y, Bruckert F, Weidenhaupt M (2013) Peptides that form β-sheets on hydrophobic surfaces accelerate surface-induced insulin amyloidal aggregation. FEBS Lett 587:1281–1286. https://doi.org/10.1016/j.febslet.2012.11.036. (PMID: 10.1016/j.febslet.2012.11.03623510797)
      Wittig I, Braun HP, Schägger H Blue native PAGE. Nat Protoc 1:418 – 28. https://doi.org/10.1038/nprot.2006.62.
      Greening DW, Simpson RJ (2011) Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration. Methods Mol Biol 728. https://doi.org/10.1007/978-1-61779-068-3_6 . :109 – 24.
      Khrustalev VV, Khrustaleva TA, Poboinev VV, Stojarov AN, Kordyukova LV, Akunevich AA (2021) Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state. Spectrochim Acta A Mol Biomol Spectrosc 257:119784. https://doi.org/10.1016/j.saa.2021.119784. (PMID: 10.1016/j.saa.2021.119784)
      Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW (2013) Protein docking using case-based reasoning. Proteins 81:2150–2158. https://doi.org/10.1002/prot.24433. (PMID: 10.1002/prot.2443324123156)
      Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG (2019) Congo Red and amyloids: history and relationship. Biosci Rep 39:BSR20181415. https://doi.org/10.1042/BSR20181415. (PMID: 10.1042/BSR20181415305677266331669)
      Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y (2010) Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Proc Natl Acad Sci U S A 107:12854–12859. https://doi.org/10.1073/pnas.1001839107. (PMID: 10.1073/pnas.1001839107206159902919943)
      Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852–1858. https://doi.org/10.1038/nprot.2006.288. (PMID: 10.1038/nprot.2006.288174871681971133)
      Poboinev VV, Khrustalev VV, Khrustaleva TA, Kasko TE, Popkov VD (2022) The PentUnFOLD algorithm as a tool to distinguish the dark and the light sides of the structural instability of proteins. Amino Acids. https://doi.org/10.1007/s00726-022-03153-5. (PMID: 10.1007/s00726-022-03153-5352946748924573)
      Chuang GY, Kozakov D, Brenke R, Comeau SR, Vajda S (2008) DARS (Decoys as the reference state) potentials for protein-protein docking. Biophys J 95:4217–4227. https://doi.org/10.1529/biophysj.108.135814. (PMID: 10.1529/biophysj.108.135814186766492567923)
      Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374–376. https://doi.org/10.1016/s0968-0004(00)89080-5. (PMID: 10.1016/s0968-0004(00)89080-57482707)
      Dassault Systemes BIOVIA (2017) Discovery Studio modeling Environment, Release 2017. Dassault Systèmes, San Diego, CA, USA.
      Kozlowski LP (2021) IPC 2.0: prediction of isoelectric point and pKa dissociation constants. Nucleic Acids Res 49:285–292. https://doi.org/10.1093/nar/gkab295. (PMID: 10.1093/nar/gkab295)
      Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319. https://doi.org/10.1093/nar/gkg565. (PMID: 10.1093/nar/gkg56512824316168972)
      Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291. https://doi.org/10.1107/S0021889892009944. (PMID: 10.1107/S0021889892009944)
      Safo MK, Musayev FN, Mosier PD, Zhou Q, Xie H, Desai UR (2014) Crystal structures of influenza a virus matrix protein M1: variations on a theme. PLoS ONE 9:e109510. https://doi.org/10.1371/Journal.Pone.0109510. (PMID: 10.1371/Journal.Pone.0109510252955154190115)
      Liu Q, Kloss B, Skowronski ES, Height J, Love J (2010) Not published.
      Lamiable A, Thevenet P, Rey J, Vavrusa M, Derreumaux P, Tuffery P (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44:449–454. https://doi.org/10.1093/nar/gkw329. (PMID: 10.1093/nar/gkw329)
      Graf M, Galera García R, Wätzig H (2005) Protein adsorption in fused-silica and polyacrylamide-coated capillaries. Electrophoresis 26:2409–2417. https://doi.org/10.1002/elps.200410360. (PMID: 10.1002/elps.20041036015966021)
      Groenning M (2010) Binding mode of thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3:1–18. https://doi.org/10.1007/s12154-009-0027-5. (PMID: 10.1007/s12154-009-0027-519693614)
      Selzer L, Su Z, Pintilie GD, Chiu W, Kirkegaard K (2020) Full-length three-dimensional structure of the influenza a virus M1 protein and its organization into a matrix layer. PLoS Biol 18:e3000827. https://doi.org/10.1371/journal.pbio.3000827. (PMID: 10.1371/journal.pbio.3000827329976527549809)
      Smith DE, Clemençon B, Hediger MA (2013) Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 34:323–336. https://doi.org/10.1016/j.mam.2012.11.003. (PMID: 10.1016/j.mam.2012.11.003235068743602806)
      World Health Organization (2022) Influenza update № 416. https://www.who.int/publications/m/item/influenza-update-n-416 . Accessed 19 April 2022.
      Klein NP, Fireman B, Goddard K, Zerbo O, Asher J, Zhou J, King J, Lewis N (2020) Vaccine effectiveness of cell-culture relative to egg-based inactivated influenza vaccine during the 2017-18 influenza season. PLoS ONE 15:e0229279. https://doi.org/10.1371/journal.pone.0229279. (PMID: 10.1371/journal.pone.0229279321015827043803)
      Panatto D, Lai PL, Mosca S, Lecini E, Orsi A, Signori A, Castaldi S, Pariani E, Pellegrinelli L, Galli C, Anselmi G, Icardi G, Team CI (2020) Influenza vaccination in italian healthcare workers (2018–2019 season): strengths and weaknesses. Results of a cohort study in two large italian hospitals. Vaccines 8:119. https://doi.org/10.3390/vaccines8010119. (PMID: 10.3390/vaccines8010119321508017157508)
      Moise L, Biron BM, Boyle CM, Yilmaz NK, Jang H, Schiffer C, Ross TM, Martin WD, De Groot AS (2018) T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response. Hum Vaccin Immunother 14:2203–2207. https://doi.org/10.1080/21645515.2018.1495303. (PMID: 10.1080/21645515.2018.1495303300155626183197)
      Plant EP, Manukyan H, Sanchez JL, Laassri M, Ye Z (2020) Immune pressure on polymorphous influenza B populations results in diverse hemagglutinin escape mutants and lineage switching. Vaccines 8:125. https://doi.org/10.3390/vaccines8010125. (PMID: 10.3390/vaccines8010125321689687157493)
      Benton DJ, Nans A, Calder LJ, Turner J, Neu U, Lin YP, Ketelaars E, Kallewaard NL, Corti D, Lanzavecchia A, Gamblin SJ, Rosenthal PB, Skehel JJ (2018) Influenza hemagglutinin membrane anchor. Proceedings of the National Academy of Sciences U S A 115:10112–10117. https://doi.org/10.1073/pnas.1810927115.
      Brett K, Kordyukova LV, Serebryakova MV, Mintaev RR, Alexeevski AV, Veit M (2014) Site-specific S-acylation of influenza virus hemagglutinin: the location of the acylation site relative to the membrane border is the decisive factor for attachment of stearate. J Biol Chem 289:4978–34989. https://doi.org/10.1074/jbc.M114.586180. (PMID: 10.1074/jbc.M114.586180)
      Peukes J, Xiong X, Erlendsson S, Qu K, Wan W, Calder LJ, Schraidt O, Kummer S, Freund SMV, Kräusslich HG, Briggs JAG (2020) The native structure of assembled influenza a virus M1 matrix protein. Nature 587:495–498. https://doi.org/10.1038/s41586-020-2696-8. (PMID: 10.1038/s41586-020-2696-8329083087116405)
      Mintaev RR, Alexeevski AV, Kordyukova LV (2014) Co-evolution analysis to predict protein–protein interactions within influenza virus envelope. J Bioinform Comput Biol 12:1441008. https://doi.org/10.1142/S021972001441008X. (PMID: 10.1142/S021972001441008X24712535)
    • Contributed Indexing:
      Keywords: Blue native gel electrophoresis; Cytoplasmic tail of hemagglutinin; M1 protein; Macromolecular docking; Tripeptides; Tryptophan fluorescence
    • Accession Number:
      0 (H1N1 virus hemagglutinin)
      0 (Hemagglutinins)
      0 (Peptides)
    • Publication Date:
      Date Created: 20230323 Date Completed: 20230719 Latest Revision: 20230719
    • Publication Date:
      20240829
    • Accession Number:
      PMC10034248
    • Accession Number:
      10.1007/s10930-023-10101-z
    • Accession Number:
      36952102