References: Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483. https://doi.org/10.1038/nri1845. (PMID: 10.1038/nri184516691244)
Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252. https://doi.org/10.1038/32588. (PMID: 10.1038/325889521319)
Worbs T, Hammerschmidt SI, Förster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17:30–48. https://doi.org/10.1038/nri.2016.116. (PMID: 10.1038/nri.2016.11627890914)
Tomura M, Hata A, Matsuoka S et al (2014) Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci Rep 4:1–11. https://doi.org/10.1038/srep06030. (PMID: 10.1038/srep06030)
Tomura M, Ikebuchi R, Moriya T, Kusumoto Y (2021) Tracking the fate and migration of cells in live animals with cell-cycle indicators and photoconvertible proteins. J Neurosci Methods 355:109127. https://doi.org/10.1016/j.jneumeth.2021.109127. (PMID: 10.1016/j.jneumeth.2021.10912733722643)
Tsutsui H, Karasawa S, Shimizu H et al (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238. https://doi.org/10.1038/sj.embor.7400361. (PMID: 10.1038/sj.embor.7400361157317651299271)
Kashem SW, Haniffa M, Kaplan DH (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499. https://doi.org/10.1146/annurev-immunol-051116-052215. (PMID: 10.1146/annurev-immunol-051116-05221528226228)
Moriya T, Kitagawa K, Hayakawa Y et al (2021) Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity. iScience 24:102424. https://doi.org/10.1016/j.isci.2021.102424. (PMID: 10.1016/j.isci.2021.102424339977028102907)
Yasuda I, Shima T, Moriya T et al (2020) Dynamic changes in the phenotype of dendritic cells in the uterus and uterine draining lymph nodes after coitus. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.557720.
Bhingare AC, Ohno T, Tomura M et al (2014) Dental pulp dendritic cells migrate to regional lymph nodes. J Dent Res 93:288–293. https://doi.org/10.1177/0022034513518223. (PMID: 10.1177/002203451351822324378366)
Nakanishi Y, Ikebuchi R, Chtanova T et al (2017) Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes. Mucosal Immunol 11:437–448. https://doi.org/10.1038/mi.2017.64. (PMID: 10.1038/mi.2017.6428766553)
Ikebuchi R, Teraguchi S, Vandenbon A et al (2016) A rare subset of skin-tropic regulatory T cells expressing Il10/Gzmb inhibits the cutaneous immune response. Sci Rep 6. https://doi.org/10.1038/srep35002.
Ikebuchi R, Fujimoto M, Nakanishi Y et al (2019) Functional phenotypic diversity of regulatory T cells remaining in inflamed skin. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01098.
Hampton HR, Bailey J, Tomura M et al (2015) Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat Commun 6. https://doi.org/10.1038/ncomms8139.
Nakamizo S, Egawa G, Tomura M et al (2015) Dermal Vγ4 + γδ T cells possess a migratory potency to the draining lymph nodes and modulate CD8 + T-cell activity through TNF-α production. J Invest Dermatol 135:1007. https://doi.org/10.1038/jid.2014.516. (PMID: 10.1038/jid.2014.51625493651)
Saito T, Yano M, Ohki Y et al (2017) Occludin expression in epidermal γδ T cells in response to epidermal stress causes them to migrate into draining lymph nodes. J Immunol 199:62–71. https://doi.org/10.4049/jimmunol.1600848. (PMID: 10.4049/jimmunol.160084828566372)
Kästele V, Mayer J, Lee ES et al (2021) Intestinal-derived ILCs migrating in lymph increase IFNγ production in response to Salmonella Typhimurium infection. Mucosal Immunol 14:717. https://doi.org/10.1038/s41385-020-00366-3. (PMID: 10.1038/s41385-020-00366-3334145248075955)
Torcellan T, Hampton HR, Bailey J et al (2017) In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A 114. https://doi.org/10.1073/pnas.1618446114.
Ikebuchi R, Moriya T, Ueda M, Yasuda I, Kusumoto Y, Tatyana Chtanova MT (2021) Recruitment, retention, and migration underpin functional phenotypic heterogeneity of regulatory T cells in tumors. J Immunol 207:771. https://doi.org/10.4049/jimmunol.2100135. (PMID: 10.4049/jimmunol.210013534290103)
Tomura M, Yoshida N, Tanaka J et al (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc Natl Acad Sci 105:10871–10876. https://doi.org/10.1073/pnas.0802278105. (PMID: 10.1073/pnas.0802278105186632252504797)
Tomura M, Honda T, Tanizaki H et al (2010) Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Invest 120:883–893. https://doi.org/10.1172/JCI40926. (PMID: 10.1172/JCI40926201793542827959)
Tomura M, Itoh K, Kanagawa O, Alerts E (2010) Naive CD4+ T lymphocytes circulate through lymphoid organs to interact with endogenous antigens and upregulate their function. J Immunol 184:4646–4653. https://doi.org/10.4049/jimmunol.0903946. (PMID: 10.4049/jimmunol.090394620304829)
Tomura M (2018) New tools for imaging of immune systems: visualization of cell cycle, cell death, and cell movement by using the mice lines expressing Fucci, SCAT3.1, and Kaede and KikGR. Methods Mol Biol 1763:165–174. https://doi.org/10.1007/978-1-4939-7762-8_16. (PMID: 10.1007/978-1-4939-7762-8_1629476498)
Tomura M, Kabashima K (2013) Analysis of cell movement between skin and other anatomical sites in vivo using photoconvertible fluorescent protein “kaede”-transgenic mice. Methods Mol Biol 961:279–286. https://doi.org/10.1007/978-1-62703-227-8_18. (PMID: 10.1007/978-1-62703-227-8_1823325651)
Ando R, Hama H, Yamamoto-Hino M et al (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci 99:12651–12656. https://doi.org/10.1073/pnas.202320599. (PMID: 10.1073/pnas.20232059912271129130515)
Futamura K, Sekino M, Hata A et al (2015) Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytom Part A 87:830. https://doi.org/10.1002/cyto.a.22725. (PMID: 10.1002/cyto.a.22725)
No Comments.