In Vivo Tracking of Dendritic Cell Migration.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Tomura M;Tomura M
  • Source:
    Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2023; Vol. 2618, pp. 39-53.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      Dendritic cells (DCs) in peripheral tissue serve as a sentinel to invasion and maintain tolerance. They ingest and carry antigens to the draining lymph nodes and present antigens to antigen-specific T cells to initiate acquired immune responses. Thus, understanding DC migration from peripheral tissues and function is critical for understanding DCs' roles in immune homeostasis. Here, we introduced the KikGR in vivo photolabeling system, an ideal tool for monitoring precise cellular movements and related functions in vivo under physiological conditions and during various immune responses that occur in pathologic condition. Using a mouse line expressing photoconvertible fluorescent protein KikGR, we can label DCs in peripheral tissues by changing the color of KikGR from green to red after exposure to violet light and accurately track DC migration from each peripheral tissue to its respective draining lymph nodes.
      (© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483. https://doi.org/10.1038/nri1845. (PMID: 10.1038/nri184516691244)
      Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252. https://doi.org/10.1038/32588. (PMID: 10.1038/325889521319)
      Worbs T, Hammerschmidt SI, Förster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17:30–48. https://doi.org/10.1038/nri.2016.116. (PMID: 10.1038/nri.2016.11627890914)
      Tomura M, Hata A, Matsuoka S et al (2014) Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci Rep 4:1–11. https://doi.org/10.1038/srep06030. (PMID: 10.1038/srep06030)
      Tomura M, Ikebuchi R, Moriya T, Kusumoto Y (2021) Tracking the fate and migration of cells in live animals with cell-cycle indicators and photoconvertible proteins. J Neurosci Methods 355:109127. https://doi.org/10.1016/j.jneumeth.2021.109127. (PMID: 10.1016/j.jneumeth.2021.10912733722643)
      Tsutsui H, Karasawa S, Shimizu H et al (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238. https://doi.org/10.1038/sj.embor.7400361. (PMID: 10.1038/sj.embor.7400361157317651299271)
      Kashem SW, Haniffa M, Kaplan DH (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499. https://doi.org/10.1146/annurev-immunol-051116-052215. (PMID: 10.1146/annurev-immunol-051116-05221528226228)
      Moriya T, Kitagawa K, Hayakawa Y et al (2021) Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity. iScience 24:102424. https://doi.org/10.1016/j.isci.2021.102424. (PMID: 10.1016/j.isci.2021.102424339977028102907)
      Yasuda I, Shima T, Moriya T et al (2020) Dynamic changes in the phenotype of dendritic cells in the uterus and uterine draining lymph nodes after coitus. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.557720.
      Bhingare AC, Ohno T, Tomura M et al (2014) Dental pulp dendritic cells migrate to regional lymph nodes. J Dent Res 93:288–293. https://doi.org/10.1177/0022034513518223. (PMID: 10.1177/002203451351822324378366)
      Nakanishi Y, Ikebuchi R, Chtanova T et al (2017) Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes. Mucosal Immunol 11:437–448. https://doi.org/10.1038/mi.2017.64. (PMID: 10.1038/mi.2017.6428766553)
      Ikebuchi R, Teraguchi S, Vandenbon A et al (2016) A rare subset of skin-tropic regulatory T cells expressing Il10/Gzmb inhibits the cutaneous immune response. Sci Rep 6. https://doi.org/10.1038/srep35002.
      Ikebuchi R, Fujimoto M, Nakanishi Y et al (2019) Functional phenotypic diversity of regulatory T cells remaining in inflamed skin. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01098.
      Hampton HR, Bailey J, Tomura M et al (2015) Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat Commun 6. https://doi.org/10.1038/ncomms8139.
      Nakamizo S, Egawa G, Tomura M et al (2015) Dermal Vγ4 + γδ T cells possess a migratory potency to the draining lymph nodes and modulate CD8 + T-cell activity through TNF-α production. J Invest Dermatol 135:1007. https://doi.org/10.1038/jid.2014.516. (PMID: 10.1038/jid.2014.51625493651)
      Saito T, Yano M, Ohki Y et al (2017) Occludin expression in epidermal γδ T cells in response to epidermal stress causes them to migrate into draining lymph nodes. J Immunol 199:62–71. https://doi.org/10.4049/jimmunol.1600848. (PMID: 10.4049/jimmunol.160084828566372)
      Kästele V, Mayer J, Lee ES et al (2021) Intestinal-derived ILCs migrating in lymph increase IFNγ production in response to Salmonella Typhimurium infection. Mucosal Immunol 14:717. https://doi.org/10.1038/s41385-020-00366-3. (PMID: 10.1038/s41385-020-00366-3334145248075955)
      Torcellan T, Hampton HR, Bailey J et al (2017) In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc Natl Acad Sci U S A 114. https://doi.org/10.1073/pnas.1618446114.
      Ikebuchi R, Moriya T, Ueda M, Yasuda I, Kusumoto Y, Tatyana Chtanova MT (2021) Recruitment, retention, and migration underpin functional phenotypic heterogeneity of regulatory T cells in tumors. J Immunol 207:771. https://doi.org/10.4049/jimmunol.2100135. (PMID: 10.4049/jimmunol.210013534290103)
      Tomura M, Yoshida N, Tanaka J et al (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc Natl Acad Sci 105:10871–10876. https://doi.org/10.1073/pnas.0802278105. (PMID: 10.1073/pnas.0802278105186632252504797)
      Tomura M, Honda T, Tanizaki H et al (2010) Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Invest 120:883–893. https://doi.org/10.1172/JCI40926. (PMID: 10.1172/JCI40926201793542827959)
      Tomura M, Itoh K, Kanagawa O, Alerts E (2010) Naive CD4+ T lymphocytes circulate through lymphoid organs to interact with endogenous antigens and upregulate their function. J Immunol 184:4646–4653. https://doi.org/10.4049/jimmunol.0903946. (PMID: 10.4049/jimmunol.090394620304829)
      Tomura M (2018) New tools for imaging of immune systems: visualization of cell cycle, cell death, and cell movement by using the mice lines expressing Fucci, SCAT3.1, and Kaede and KikGR. Methods Mol Biol 1763:165–174. https://doi.org/10.1007/978-1-4939-7762-8_16. (PMID: 10.1007/978-1-4939-7762-8_1629476498)
      Tomura M, Kabashima K (2013) Analysis of cell movement between skin and other anatomical sites in vivo using photoconvertible fluorescent protein “kaede”-transgenic mice. Methods Mol Biol 961:279–286. https://doi.org/10.1007/978-1-62703-227-8_18. (PMID: 10.1007/978-1-62703-227-8_1823325651)
      Ando R, Hama H, Yamamoto-Hino M et al (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci 99:12651–12656. https://doi.org/10.1073/pnas.202320599. (PMID: 10.1073/pnas.20232059912271129130515)
      Futamura K, Sekino M, Hata A et al (2015) Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytom Part A 87:830. https://doi.org/10.1002/cyto.a.22725. (PMID: 10.1002/cyto.a.22725)
    • Contributed Indexing:
      Keywords: Dendritic cells; In vivo photo labeling; KikGR mouse; Migration; Photoconvertible protein; Tracking
    • Accession Number:
      0 (Proteins)
      0 (Antigens)
    • Publication Date:
      Date Created: 20230311 Date Completed: 20230314 Latest Revision: 20230424
    • Publication Date:
      20230424
    • Accession Number:
      10.1007/978-1-0716-2938-3_3
    • Accession Number:
      36905507