Sex-specific outbreeding advantages and sexual dimorphism in the seedlings of dioecious trees.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Zhang Y;Zhang Y; Lin W; Lin W; Chu C; Chu C; Ni M; Ni M
  • Source:
    American journal of botany [Am J Bot] 2023 Apr; Vol. 110 (4), pp. e16153. Date of Electronic Publication: 2023 Apr 03.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 0370467 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2197 (Electronic) Linking ISSN: 00029122 NLM ISO Abbreviation: Am J Bot Subsets: MEDLINE
    • Publication Information:
      Publication: <2018-> : [Philadelphia, PA] : Wiley
      Original Publication: Baltimore Md : Botanical Society Of America
    • Subject Terms:
    • Abstract:
      Premise: Dioecious trees are important components of many forest ecosystems. Outbreeding advantage and sexual dimorphism are two major mechanisms that explain the persistence of dioecious plants; however, they have rarely been studied in dioecious trees.
      Methods: We investigated the influence of sex and genetic distance between parental trees (GDPT) on the growth and functional traits of multiple seedlings of a dioecious tree, Diospyros morrisiana.
      Results: We found significant positive relationships between GDPT and seedling sizes and tissue density. However, the positive outbreeding effects on seedling growth mainly manifested in female seedlings, but were not prominent in males. Among seedlings, the male ones generally had higher biomass and leaf area than female seedlings, but such differences diminished as GDPT increased.
      Conclusions: Our research highlights that outbreeding advantage in plants can be sex-specific and that sexual dimorphism begins from the seedling stage of dioecious trees.
      (© 2023 Botanical Society of America.)
    • References:
      Abbas, S., J. E. Nichol, J. Zhang, G. A. Fischer, M. S. Wong, and S. M. Irteza. 2021. Spatial and environmental constraints on natural forest regeneration in the degraded landscape of Hong Kong. Science of the Total Environment 752: 141760.
      Akagi, T., I. M. Henry, R. Tao, and L. Comai. 2014. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346: 646-650.
      Andersson, M. 1994. Sexual selection. Princeton, NJ: Princeton University Press.
      Austerlitz, F., G. Gleiser, S. Teixeira, and G. Bernasconi. 2012. The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant. Proceedings of the Royal Society B: Biological Sciences 279: 91-100.
      Barrett, S. C. H., and J. Hough. 2013. Sexual dimorphism in flowering plants. Journal of Experimental Botany 64: 67-82.
      Bawa, K. S. 1980. Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics 11: 15-39.
      Bawa, K. S., and P. A. Opler. 1975. Dioecism in tropical forest trees. Evolution 29: 167.
      Bernstein, H., F. A. Hopf, and R. E. Michod. 1987. The molecular basis of the evolution of sex. Advances in Genetics 24: 323-370.
      Bowcock, A. M., A. Ruiz-Linares, J. Tomfohrde, E. Minch, J. R. Kidd, and L. L. Cavalli-Sforza. 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.
      Bruijning, M., M. D. Visser, H. C. Muller-Landau, S. J. Wright, L. S. Comita, S. P. Hubbell, H. de Kroon, and E. Jongejans. 2017. Surviving in a cosexual world: a cost-benefit analysis of dioecy in tropical trees. American Naturalist 189: 297-314.
      Carazo, P., J. Green, I. Sepil, T. Pizzari, and S. Wigby. 2016. Inbreeding removes sex differences in lifespan in a population of Drosophila melanogaster. Biology Letters 12: 20160337.
      Casimiro-Soriguer, I., E. Narbona, and M. L. Buide. 2016. Diversity and evolution of sexual strategies in silene: a review. In: U. Lüttge, F. M. Cánovas, and R. Matyssek (eds). Progress in Botany, 357-377. Springer International Publishing, Switzerland.
      Charlesworth, D., and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18: 237-268.
      Corlett, R. T. 1996. Characteristics of vertebrate-dispersed fruits in Hong Kong. Journal of Tropical Ecology 12: 819-833.
      Corlett, R. T. 2001. Pollination in a degraded tropical landscape: A Hong Kong case study. Journal of Tropical Ecology 17: 155-161.
      Cox, P. A. 1981. Niche partitioning between sexes of dioecious plants. American Naturalist 117: 295-307.
      Cristóbal-Pérez, E. J., E. J. Fuchs, U. Olivares-Pinto, and M. Quesada. 2020. Janzen-Connell effects shape gene flow patterns and realized fitness in the tropical dioecious tree Spondias purpurea (ANACARDIACEAE). Scientific Reports 10: 1-12.
      Díaz, S., J. Kattge, J. H. C. Cornelissen, I. J. Wright, S. Lavorel, S. Dray, B. Reu, et al. 2016. The global spectrum of plant form and function. Nature 529: 167-171.
      Ebel, E. R., and P. C. Phillips. 2016. Intrinsic differences between males and females determine sex-specific consequences of inbreeding. BMC Evolutionary Biology 16: 1-10.
      Eppley, S. M., and J. R. Pannell. 2009. Inbreeding depression in dioecious populations of the plant Mercurialis annua: comparisons between outcrossed progeny and the progeny of self-fertilized feminized males. Heredity 102: 600-608.
      Field, D. L., M. Pickup, and S. C. H. Barrett. 2013. Comparative analyses of sex-ratio variation in dioecious flowering plants. Evolution 67: 661-672.
      Garnier, E., M. L. Navas, and K. Grigulis. 2016. Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press.
      Heilbuth, J. C., K. L. Ilves, and S. P. Otto. 2001. The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55: 880-888.
      Holleley, C. E., and P. G. Geerts. 2009. Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques 46: 511-517.
      Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347: 32.
      Karbstein, K., K. Prinz, F. Hellwig, and C. Römermann. 2020. Plant intraspecific functional trait variation is related to within-habitat heterogeneity and genetic diversity in Trifolium montanum L. Ecology and Evolution 10: 5015-5033.
      Kraft, N. J., R. Valencia, and D. D. Ackerly. 2008. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322: 580-582.
      Lankinen, Å., and K. K. Green. 2015. Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AoB Plants 7: plv008.
      Liu, Y., and F. He. 2019. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Functional Ecology 33: 1211-1222.
      Luo, W., M. Ni, Y. Wang, R. Lan, D. M. Eissenstat, J. F. Cahill, B. Li, and C. Chu. 2021. Limited evidence of vertical fine-root segregation in a subtropical forest. New Phytologist 231: 2308-2318.
      Ma, Z., D. Guo, X. Xu, M. Lu, R. D. Bardgett, D. M. Eissenstat, M. L. McCormack, and L. O. Hedin. 2018. Evolutionary history resolves global organization of root functional traits. Nature 555: 94-97.
      Medley, K. A., D. G. Jenkins, and E. A. Hoffman. 2015. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Molecular Ecology 24: 284-295.
      Monthe, F. K., O. J. Hardy, J. L. Doucet, J. Loo, and J. Duminil. 2017. Extensive seed and pollen dispersal and assortative mating in the rain forest tree Entandrophragma cylindricum (Meliaceae) inferred from indirect and direct analyses. Molecular Ecology 26: 5279-5291.
      Murphy, M. A., J. S. Evans, and A. Storfer. 2010. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91: 252-261.
      Ni, M., Y. Liu, C. Chu, H. Xu, and S. Fang. 2018. Fast seedling root growth leads to competitive superiority of invasive plants. Biological Invasions 20: 1-12.
      Peakall, R., and P. E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537-2539.
      R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: http://www.R-project.org/.
      Renner, S. S. 2014. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101: 1588-1596.
      Renner, S. S., and R. E. Ricklefs. 1995. Dioecy and its correlates in the flowering plants. American Journal of Botany 82: 596-606.
      Ritland, K. 2002. Extensions of models for the estimation of mating systems using n independent loci. Heredity 88: 221-228.
      Rousset, F. 2008. GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103-106.
      Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, et al. 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32: 305-332.
      Saetre, G. P., and M. Ravinet. 2019. Evolutionary genetics: Concepts, analysis, and practice. USA, New York: Oxford University Press.
      Schrieber, K., S. C. Paul, L. V. Höche, A. C. Salas, R. Didszun, Mößnang, J., C. Müller, et al. 2021. Inbreeding in a dioecious plant has sex-and population origin-specific effects on its interactions with pollinators. Elife 10: e65610.
      Shipley, B., D. Vile, and É. Garnier. 2006. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314: 812-814.
      Silvertown, J., and D. Charlesworth. 2009. Introduction to plant population biology. John Wiley & Sons.
      Smouse, P. E., R. J. Dyer, R. D. Westfall, and V. L. Sork. 2001. Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55: 260-271.
      Van Oosterhout, C., W. F. Hutchinson, D. P. Wills, and P. Shipley. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538.
      Vega-Trejo, R., R. A. Boer, J. L. Fitzpatrick, and A. Kotrschal. 2022. Sex-specific inbreeding depression: A meta-analysis. Ecology Letters 25: 1009-1026.
      Wang, Y., A. Luo, T. Lyu, D. Dimitrov, X. Xu, R. P. Freckleton, Y. Li, et al. 2021. Global distribution and evolutionary transitions of angiosperm sexual systems. Ecology Letters 24: 1835-1847.
      Wang, Y., T. Lyu, N. Shrestha, L. Lyu, Y. Li, B. Schmid, R. P. Freckleton, et al. 2019. Drivers of large-scale geographical variation in sexual systems of woody plants. Global Ecology and Biogeography 29: 546-557.
      Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
    • Contributed Indexing:
      Keywords: dioecious plants; genetic distance; outbreeding advantage; seedling; sex; sexual dimorphism
    • Publication Date:
      Date Created: 20230311 Date Completed: 20230501 Latest Revision: 20230509
    • Publication Date:
      20230512
    • Accession Number:
      10.1002/ajb2.16153
    • Accession Number:
      36905311