Haptoglobin genotype and its relation to asymptomatic cerebral small-vessel disease in type 1 diabetes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Corporate Authors:
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aim: Cerebral small-vessel disease (SVD) is prevalent in type 1 diabetes and has been associated with the haptoglobin variant allele Hp1. Contrarily, the Hp2-allele has been linked to cardiovascular disease and the role of haptoglobin-genotype in asymptomatic SVD is unknown. We, therefore, aimed to evaluate the alleles' association with SVD.
      Methods: This cross-sectional study included 179 neurologically asymptomatic adults with type 1 diabetes (women 53%, mean age 39 ± 7 years, diabetes duration 23 ± 10 years, HbA 1c 8.1 ± 3.2% [65 ± 12 mmol/mol]). Examinations included genotyping (genotypes Hp1-1, Hp2-1, Hp2-2) by polymerase chain reaction, clinical investigation, and magnetic resonance brain images assessed for SVD manifestations (white matter hyperintensities, cerebral microbleeds, and lacunar infarcts).
      Results: SVD prevalence was 34.6%. Haptoglobin genotype frequencies were 15.6% (Hp1-1), 43.6% (Hp1-2), and 40.8% (Hp2-2). Only diastolic blood pressure differed between the genotypes Hp1-1, Hp1-2, and Hp2-2 (81 [74-83], 75 [70-80], and 75 [72-81] mmHg, p = 0.019). Haptoglobin genotype frequencies by presence versus absence of SVD were 16.1%; 46.8%; 37.1% versus 15.4%; 41.9%; 42.7% (p = 0.758). Minor allele frequencies were 39.5% versus 36.3% (p = 0.553). Hp1 homozygotes and Hp2 carriers displayed equal proportions of SVD (35.7% vs 34.4%, p > 0.999) and SVD manifestations (white matter hyperintensities 14.3% vs 17.9%, p = 0.790; microbleeds 25.0% vs 21.9%, p = 0.904; lacunar infarcts 0% vs 3.6%, p > 0.999). Hp1-1 was not associated with SVD (OR 1.19, 95% CI 0.46-2.94, p = 0.712) when adjusting for age, blood pressure, and diabetic retinopathy.
      Conclusions: Although the SVD prevalence was high, we detected no significant association between SVD and haptoglobin-genotype.
      (© 2023. The Author(s).)
    • References:
      Hay SI, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F et al (2017) Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 390(10100):1260–1344. https://doi.org/10.1016/S0140-6736(17)32130-X. (PMID: 10.1016/S0140-6736(17)32130-X)
      Cai X, Li J, Cai W, Chen C, Ma J, Xie Z et al (2021) Meta-analysis of type 1 diabetes mellitus and risk of cardiovascular disease. J Diabetes Its Complicat 35(4):107833. https://doi.org/10.1016/j.jdiacomp.2020.107833. (PMID: 10.1016/j.jdiacomp.2020.107833)
      Janghorbani M, Hu FB, Willett WC, Li TY, Manson JE, Logroscino G et al (2007) Prospective study of type 1 and type 2 diabetes and risk of stroke subtypes. Diabetes Care 30(7):1730. (PMID: 10.2337/dc06-236317389335)
      Putaala J, Liebkind R, Gordin D, Thorn LM, Haapaniemi E, Forsblom C et al (2011) Diabetes mellitus and ischemic stroke in the young. Neurology 76(21):1831. https://doi.org/10.1212/WNL.0b013e31821cccc2. (PMID: 10.1212/WNL.0b013e31821cccc221606455)
      Thorn LM, Shams S, Gordin D, Liebkind R, Forsblom C, Summanen P et al (2019) Clinical and MRI features of cerebral small-vessel disease in type 1 diabetes. Diabetes Care 42(2):327. https://doi.org/10.2337/dc18-1302. (PMID: 10.2337/dc18-130230552131)
      Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9(7):689–701. https://doi.org/10.1016/S1474-4422(10)70104-6. (PMID: 10.1016/S1474-4422(10)70104-620610345)
      Eriksson MI, Gordin D, Shams S, Forsblom C, Summanen P, Liebkind R et al (2020) Nocturnal blood pressure is associated with cerebral small-vessel disease in type 1 diabetes. Diabetes Care 43(8):e96. https://doi.org/10.2337/dc20-0473. (PMID: 10.2337/dc20-047332527801)
      Inkeri J, Tynjälä A, Forsblom C, Liebkind R, Tatlisumak T, Thorn LM et al (2021) Carotid intima-media thickness and arterial stiffness in relation to cerebral small vessel disease in neurologically asymptomatic individuals with type 1 diabetes. Acta Diabetol 58(7):929–937. https://doi.org/10.1007/s00592-021-01678-x. (PMID: 10.1007/s00592-021-01678-x337430838187193)
      Eriksson MI, Summanen P, Gordin D, Forsblom C, Shams S, Liebkind R et al (2021) Cerebral small-vessel disease is associated with the severity of diabetic retinopathy in type 1 diabetes. BMJ Open Diabetes Res Care 9(1):e002274. https://doi.org/10.1136/bmjdrc-2021-002274. (PMID: 10.1136/bmjdrc-2021-002274344292818386215)
      van Elderen SGC, Brandts A, Westenberg JJM, van der Grond J, Tamsma JT, van Buchem MA et al (2010) Aortic stiffness is associated with cardiac function and cerebral small vessel disease in patients with type 1 diabetes mellitus: assessment by magnetic resonance imaging. Eur Radiol 20(5):1132–1138. https://doi.org/10.1007/s00330-009-1655-4. (PMID: 10.1007/s00330-009-1655-419915847)
      Woerdeman J, van Duinkerken E, Wattjes MP, Barkhof F, Snoek FJ, Moll AC et al (2014) Proliferative retinopathy in type 1 diabetes is associated with cerebral microbleeds, which is part of generalized microangiopathy. Diabetes Care 37(4):1165. (PMID: 10.2337/dc13-158624319122)
      Costacou T, Rosano C, Aizenstein H, Mettenburg JM, Nunley K, Ferrell RE et al (2015) The haptoglobin 1 allele correlates with white matter hyperintensities in middle-aged adults with type 1 diabetes. Diabetes 64(2):654. https://doi.org/10.2337/db14-0723. (PMID: 10.2337/db14-072325213335)
      Carter K, Worwood M (2007) Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases. Int J Lab Hematol 29(2):92–110. https://doi.org/10.1111/j.1751-553X.2007.00898.x. (PMID: 10.1111/j.1751-553X.2007.00898.x17474882)
      Ijäs P, Saksi J, Soinne L, Tuimala J, Jauhiainen M, Jula A et al (2013) Haptoglobin 2 allele associates with unstable carotid plaque and major cardiovascular events. Atherosclerosis 230(2):228–234. https://doi.org/10.1016/j.atherosclerosis.2013.07.008. (PMID: 10.1016/j.atherosclerosis.2013.07.00824075749)
      Vardi M, Blum S, Levy AP (2012) Haptoglobin genotype and cardiovascular outcomes in diabetes mellitus—natural history of the disease and the effect of vitamin E treatment. Meta-analysis of the medical literature. Eur J Intern Med 23(7):628–632. https://doi.org/10.1016/j.ejim.2012.04.009. (PMID: 10.1016/j.ejim.2012.04.009229398083600118)
      Levy AP, Hochberg I, Jablonski K, Resnick HE, Lee ET, Best L et al (2002) Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: the strong heart study. J Am Coll Cardiol 40(11):1984–1990. https://doi.org/10.1016/S0735-1097(02)02534-2. (PMID: 10.1016/S0735-1097(02)02534-212475459)
      Roguin A, Koch W, Kastrati A, Aronson D, Schomig A, Levy AP (2003) Haptoglobin genotype is predictive of major adverse cardiac events in the 1-year period after percutaneous transluminal coronary angioplasty in individuals with diabetes. Diabetes Care 26(9):2628. https://doi.org/10.2337/diacare.26.9.2628. (PMID: 10.2337/diacare.26.9.262812941730)
      Costacou T, Ferrell RE, Orchard TJ (2008) Haptoglobin genotype. Diabetes 57(6):1702. https://doi.org/10.2337/db08-0095. (PMID: 10.2337/db08-009518332093)
      Costacou T, Ferrell RE, Ellis D, Orchard TJ (2009) Haptoglobin genotype and renal function decline in type 1 diabetes. Diabetes 58(12):2904. https://doi.org/10.2337/db09-0874. (PMID: 10.2337/db09-0874197207962780877)
      Costacou T, Orchard TJ (2016) The haptoglobin genotype predicts cardio-renal mortality in type 1 diabetes. J Diabetes Complicat 30(2):221–226. https://doi.org/10.1016/j.jdiacomp.2015.11.011. (PMID: 10.1016/j.jdiacomp.2015.11.011)
      Staals J, Pieters BM, Knottnerus IL, Rouhl RP, van Oostenbrugge RJ, Delanghe JR et al (2008) Haptoglobin polymorphism and lacunar stroke. Curr Neurovasc Res 5(3):153–158. https://doi.org/10.2174/156720208785425675. (PMID: 10.2174/15672020878542567518691072)
      Costacou T, Secrest AM, Ferrell RE, Orchard TJ (2014) Haptoglobin genotype and cerebrovascular disease incidence in type 1 diabetes. Diab Vasc Dis Res 11(5):335–342. https://doi.org/10.1177/1479164114539713. (PMID: 10.1177/147916411453971324994788)
      Ijäs P, Melkas S, Saksi J, Jula A, Jauhiainen M, Oksala N et al (2017) Haptoglobin Hp2 variant promotes premature cardiovascular death in stroke survivors. Stroke 48(6):1463–1469. https://doi.org/10.1161/STROKEAHA.116.015683. (PMID: 10.1161/STROKEAHA.116.01568328487337)
      Syreeni A, Dahlström EH, Hägg-Holmberg S, Forsblom C, Eriksson MI, Harjutsalo V et al (2022) Haptoglobin genotype does not confer a risk of stroke in type 1 diabetes. Diabetes. https://doi.org/10.2337/db22-0327. (PMID: 10.2337/db22-032736409784)
      Thorn LM, Forsblom C, Fagerudd J, Thomas MC, Pettersson-Fernholm K, Saraheimo M et al (2005) Metabolic syndrome in type 1 diabetes. Diabetes Care 28(8):2019. https://doi.org/10.2337/diacare.28.8.2019. (PMID: 10.2337/diacare.28.8.201916043748)
      Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF III, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A New equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006%m19414839. (PMID: 10.7326/0003-4819-150-9-200905050-00006%m19414839194148392763564)
      Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838. https://doi.org/10.1016/S1474-4422(13)70124-8. (PMID: 10.1016/S1474-4422(13)70124-8238672003714437)
      Moor C, Jacobson S. genpwr: power calculations under genetic model misspecification. https://CRAN.R-project.org/package=genpwr2021 . Updated 2022-10-13–2022-11-15.
      Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol 149(2):351–356. https://doi.org/10.2214/ajr.149.2.351. (PMID: 10.2214/ajr.149.2.351)
      Lempiäinen J, Ijäs P, Niiranen TJ, Kaste M, Karhunen PJ, Lindsberg PJ et al (2020) Haptoglobin Hp1 variant does not associate with small vessel disease. Brain Sci. https://doi.org/10.3390/brainsci10010018. (PMID: 10.3390/brainsci10010018)
      Staals J, Henskens LH, Delanghe JR, van Oostenbrugge RJ, Kessels AG, Kroon AA et al (2010) Haptoglobin phenotype correlates with the extent of cerebral deep white matter lesions in hypertensive patients. Curr Neurovasc Res 7(1):1–5. https://doi.org/10.2174/156720210790820163. (PMID: 10.2174/15672021079082016320158468)
      Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage. Stroke 42(6):1781–1786. https://doi.org/10.1161/STROKEAHA.110.596718. (PMID: 10.1161/STROKEAHA.110.596718215277593123894)
      Rouhl R, Oostenbrugge R, Damoiseaux JG, Debrus-Palmans L, Theunissen RO, Knottnerus I et al (2009) Haptoglobin phenotype may alter endothelial progenitor cell cluster formation in cerebral small vessel disease. Curr Neurovasc Res 6(1):32–41. https://doi.org/10.2174/156720209787466082. (PMID: 10.2174/15672020978746608219355924)
      Wardlaw JM, Smith C, Dichgans M (2019) Small vessel disease: mechanisms and clinical implications. Lancet Neurol 18(7):684–696. https://doi.org/10.1016/S1474-4422(19)30079-1. (PMID: 10.1016/S1474-4422(19)30079-131097385)
      Low A, Mak E, Rowe JB, Markus HS, O’Brien JT (2019) Inflammation and cerebral small vessel disease: a systematic review. Ageing Res Rev 53:100916. https://doi.org/10.1016/j.arr.2019.100916. (PMID: 10.1016/j.arr.2019.10091631181331)
      Gusdon AM, Savarraj J, Zhu L, Pandit PKT, Doré S, McBride DW et al (2020) Haptoglobin genotype affects inflammation after aneurysmal subarachnoid hemorrhage. Curr Neurovasc Res 17(5):652–659. https://doi.org/10.2174/1567202617666201214104623. (PMID: 10.2174/156720261766620121410462333319684)
    • Grant Information:
      275614 Academy of Finland; 316664 Academy of Finland; UAK10121MRI Academy of Finland; NNF OC0013659 Novo Nordisk Fonden
    • Contributed Indexing:
      Keywords: Brain MRI; Cerebral small-vessel disease; Diabetes mellitus; Haptoglobin genotype; Stroke; Type 1 diabetes
    • Accession Number:
      0 (Haptoglobins)
      0 (Chromosomal Proteins, Non-Histone)
    • Publication Date:
      Date Created: 20230301 Date Completed: 20230501 Latest Revision: 20230524
    • Publication Date:
      20240628
    • Accession Number:
      PMC10148779
    • Accession Number:
      10.1007/s00592-023-02059-2
    • Accession Number:
      36856861