Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Basel, Switzerland : MDPI, [2000-
    • Subject Terms:
    • Abstract:
      SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.
    • References:
      Int J Infect Dis. 2021 Jun;107:172-175. (PMID: 33872783)
      J Am Soc Nephrol. 2021 Jun 1;32(6):1339-1354. (PMID: 33727367)
      Front Immunol. 2020 Nov 30;11:611337. (PMID: 33329607)
      Proc Natl Acad Sci U S A. 1982 Oct;79(19):5793-7. (PMID: 6310545)
      Protein Cell. 2020 Oct;11(10):771-775. (PMID: 32303993)
      ISME J. 2018 Feb;12(2):438-450. (PMID: 29028003)
      Microbiome. 2022 Apr 11;10(1):59. (PMID: 35410461)
      Sci Total Environ. 2020 Dec 20;749:141364. (PMID: 32836117)
      FEBS Lett. 2020 Jun;594(11):1651-1660. (PMID: 32449939)
      Virology. 2013 Nov;446(1-2):378-88. (PMID: 24074602)
      Vaccines (Basel). 2022 Apr 29;10(5):. (PMID: 35632464)
      F1000Res. 2021 Jul 8;10:550. (PMID: 35106136)
      Rev Med Virol. 2020 May;30(3):e2106. (PMID: 32302058)
      Front Med (Lausanne). 2021 May 07;8:615099. (PMID: 34026773)
      Bull N Y Acad Med. 1957 Jan;33(1):17-39. (PMID: 13383294)
      Science. 1983 May 20;220(4599):868-71. (PMID: 6189183)
      Virol J. 2021 Jul 18;18(1):149. (PMID: 34275492)
      Exp Toxicol Pathol. 2007 Aug;58(6):375-82. (PMID: 17408938)
      Med. 2022 Jun 10;3(6):371-387.e9. (PMID: 35434682)
      J Biochem. 2021 Sep 22;170(1):5-13. (PMID: 33788945)
      Int J Infect Dis. 2021 Jun;107:201-204. (PMID: 33945868)
      PLoS One. 2017 Dec 18;12(12):e0189972. (PMID: 29253022)
      Sci Rep. 2021 Jun 16;11(1):12703. (PMID: 34135459)
      Science. 2011 Oct 14;334(6053):249-52. (PMID: 21998395)
      Front Microbiol. 2020 Oct 23;11:594868. (PMID: 33193274)
      Medicina (Kaunas). 2021 Mar 20;57(3):. (PMID: 33804646)
      Biochem J. 2018 Apr 23;475(8):1397-1410. (PMID: 29592871)
      Lancet Reg Health Am. 2021 Oct;2:100046. (PMID: 34485969)
      Infect Immun. 2007 Dec;75(12):5726-34. (PMID: 17923523)
      Biomedicines. 2022 Dec 29;11(1):. (PMID: 36672595)
      Lab Invest. 2010 Jun;90(6):824-34. (PMID: 20386539)
      F1000Res. 2021 May 11;10:370. (PMID: 34336189)
      J Chromatogr. 1964 Jan;13:269-70. (PMID: 14110320)
      Neuro Endocrinol Lett. 2014;35(2):110-5. (PMID: 24878974)
      Proc Soc Exp Biol Med. 1975 Oct;150(1):155-60. (PMID: 171681)
      Med Sci Monit. 2011 Feb 25;17(3):CR154-8. (PMID: 21358602)
      Sci Rep. 2021 Oct 26;11(1):21126. (PMID: 34702867)
      Br Med J. 1955 Jul 16;2(4932):160-2. (PMID: 20788449)
      J Chromatogr Sci. 1978 May;16(5):207-10. (PMID: 670372)
      Medicina (Kaunas). 2022 May 06;58(5):. (PMID: 35630059)
      J Gen Virol. 2020 Sep;101(9):925-940. (PMID: 32568027)
      Mol Imaging. 2022 Mar 22;2022:7908357. (PMID: 35418808)
      Pflugers Arch. 2022 Jul;474(7):733-741. (PMID: 35397662)
      Genomics. 2021 Jan;113(1 Pt 2):1221-1232. (PMID: 33007398)
      Sci Rep. 2020 Oct 2;10(1):16383. (PMID: 33009446)
      J Mass Spectrom. 2017 Jan;52(1):16-21. (PMID: 27776380)
      Nat Commun. 2022 Nov 1;13(1):5926. (PMID: 36319618)
      Appl Microbiol Biotechnol. 2020 Oct;104(19):8089-8104. (PMID: 32813065)
      Clin Microbiol Infect. 2020 Dec;26(12):1622-1629. (PMID: 32711058)
      Infect Dis (Lond). 2021 Aug;53(8):581-589. (PMID: 33760699)
      Int J Infect Dis. 2020 Nov;100:7-9. (PMID: 32829053)
      Medicina (Kaunas). 2021 Aug 27;57(9):. (PMID: 34577814)
      Rapid Commun Mass Spectrom. 2015 Apr 15;29(7):690-4. (PMID: 26212288)
      J Clin Med. 2021 Apr 02;10(7):. (PMID: 33918294)
      Front Biosci. 1996 Aug 01;1:e42-54. (PMID: 9159244)
      Sci China Life Sci. 2013 Aug;56(8):688-96. (PMID: 23917840)
      Methods Mol Biol. 2014;1156:213-22. (PMID: 24791991)
      Rapid Commun Mass Spectrom. 2014 Mar 15;28(5):536-44. (PMID: 24497292)
      Rapid Commun Mass Spectrom. 2015 Oct 15;29(19):1703-10. (PMID: 26331920)
      mBio. 2023 Apr 25;14(2):e0362122. (PMID: 36892291)
      R Soc Health J. 1962 Mar-Apr;82:51-9. (PMID: 14495784)
      J Agric Food Chem. 2007 Nov 14;55(23):9554-8. (PMID: 17941692)
      Rapid Commun Mass Spectrom. 2019 Jul 30;33(14):1221-1225. (PMID: 31013543)
      Front Cell Infect Microbiol. 2021 May 07;11:667987. (PMID: 34026664)
      Int J Infect Dis. 2021 Oct;111:347-353. (PMID: 34454120)
      Methods. 2008 Nov;46(3):213-23. (PMID: 18948203)
      J Clin Microbiol. 1976 Mar;3(3):376-7. (PMID: 178691)
      Int J Mol Sci. 2021 Jun 18;22(12):. (PMID: 34207305)
      Cell. 2017 Feb 23;168(5):928-943.e11. (PMID: 28215708)
      Front Cell Infect Microbiol. 2021 Sep 16;11:712360. (PMID: 34604106)
      PLoS One. 2021 Feb 23;16(2):e0243183. (PMID: 33621263)
      Expert Rev Proteomics. 2010 Feb;7(1):39-53. (PMID: 20121475)
      Int J Infect Dis. 2020 Oct;99:328-333. (PMID: 32497809)
      Annu Rev Microbiol. 1994;48:687-712. (PMID: 7826023)
      Science. 1956 Jun 29;123(3209):1151-7. (PMID: 13337331)
      Int J Infect Dis. 2021 Apr;105:617-620. (PMID: 33640570)
    • Contributed Indexing:
      Keywords: D-Amino acid; SARS-CoV-2; bacteriophage; feces; fluorescent microscopy; mass spectrometry; microbiome; nasopharyngeal swab; spectral counting
    • Accession Number:
      63231-63-0 (RNA)
      0 (Amino Acids)
    • Publication Date:
      Date Created: 20230225 Date Completed: 20230228 Latest Revision: 20231106
    • Publication Date:
      20231215
    • Accession Number:
      PMC9965620
    • Accession Number:
      10.3390/ijms24043929
    • Accession Number:
      36835341