Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Association for the Advancement of Science Country of Publication: United States NLM ID: 101653440 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2375-2548 (Electronic) Linking ISSN: 23752548 NLM ISO Abbreviation: Sci Adv Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, DC : American Association for the Advancement of Science, [2015]-
    • Subject Terms:
    • Abstract:
      A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.
    • References:
      Neuroscience. 1987 Aug;22(2):737-52. (PMID: 2444903)
      Nat Commun. 2021 Jun 14;12(1):3611. (PMID: 34127673)
      Nat Rev Gastroenterol Hepatol. 2014 Oct;11(10):611-27. (PMID: 25001973)
      Acta Biomater. 2014 Jun;10(6):2630-42. (PMID: 24486911)
      Nat Med. 2014 Jun;20(6):648-54. (PMID: 24836575)
      J Am Chem Soc. 2017 Jun 14;139(23):7666-7676. (PMID: 28493690)
      Acc Chem Res. 2018 Sep 18;51(9):1901-1910. (PMID: 30074758)
      J Exp Med. 2006 Mar 20;203(3):497-500. (PMID: 16533891)
      Nat Rev Drug Discov. 2019 Dec;18(12):923-948. (PMID: 31477883)
      Sci Robot. 2022 Sep 28;7(70):eabo4160. (PMID: 36170380)
      Nutrients. 2021 Jul 20;13(7):. (PMID: 34371983)
      Nat Rev Immunol. 2011 Oct 10;11(11):762-74. (PMID: 21984070)
      Sci Robot. 2017 Mar 15;2(4):. (PMID: 31552379)
      Sci Adv. 2021 May 12;7(20):. (PMID: 33980483)
      Adv Mater. 2021 Feb;33(6):e2000512. (PMID: 32578282)
      Crit Rev Food Sci Nutr. 2021;61(19):3267-3278. (PMID: 32744076)
      Dev Cell. 2002 Oct;3(4):469-78. (PMID: 12408799)
      Nat Nanotechnol. 2021 Apr;16(4):369-384. (PMID: 33753915)
      Nat Protoc. 2017 Jul;12(7):1387-1399. (PMID: 28617450)
      Cell. 2022 Jun 23;185(13):2292-2308.e20. (PMID: 35750034)
      J Dairy Sci. 2009 Jun;92(6):2423-34. (PMID: 19447974)
      Pharm Res. 2005 Aug;22(8):1320-30. (PMID: 16078142)
      Nature. 2009 Apr 30;458(7242):1180-4. (PMID: 19407801)
      Sci Adv. 2020 Jul 22;6(30):eaba2987. (PMID: 32832662)
      Nature. 2022 Jan;601(7892):274-279. (PMID: 34880492)
      Sci Adv. 2017 Aug 02;3(8):e1700362. (PMID: 28782037)
      Nat Rev Neurosci. 2020 Mar;21(3):139-152. (PMID: 32042145)
      Nat Chem. 2018 Mar;10(3):311-317. (PMID: 29461522)
      Crit Rev Biotechnol. 2022 Jun 20;:1-18. (PMID: 35723581)
      J Biol Chem. 2013 May 31;288(22):16043-54. (PMID: 23609446)
      Sci Transl Med. 2020 Aug 26;12(558):. (PMID: 32848095)
      Nat Rev Gastroenterol Hepatol. 2015 Dec;12(12):720-7. (PMID: 26323879)
      Nat Rev Gastroenterol Hepatol. 2018 Feb;15(2):111-128. (PMID: 29018272)
      J Anim Sci. 2020 Mar 1;98(3):. (PMID: 32152634)
      Nano Lett. 2018 Apr 11;18(4):2711-2717. (PMID: 29552886)
      Sci Robot. 2021 Mar 24;6(52):. (PMID: 34043546)
      Nat Nanotechnol. 2019 Dec;14(12):1129-1134. (PMID: 31740796)
      Blood. 2000 Jun 15;95(12):3823-31. (PMID: 10845916)
      J Control Release. 2020 Nov 10;327:703-724. (PMID: 32941930)
      Nano Lett. 2017 Feb 8;17(2):1056-1064. (PMID: 28075596)
      Gastroenterology. 2013 May;144(5):967-77. (PMID: 23380084)
      Trends Pharmacol Sci. 2018 Jun;39(6):536-546. (PMID: 29628274)
      Nat Commun. 2017 Aug 16;8(1):272. (PMID: 28814725)
      Nano Today. 2017 Oct;16:82-96. (PMID: 31186671)
      Biochemistry. 2018 Oct 30;57(43):6256-6263. (PMID: 30251529)
      ACS Nano. 2019 Nov 26;13(11):12758-12766. (PMID: 31621286)
      Eur J Pharm Biopharm. 2014 Jul;87(2):227-35. (PMID: 24413146)
      Chem Rev. 2022 Mar 9;122(5):5365-5403. (PMID: 33522238)
      Fungal Genet Biol. 2020 Apr;137:103333. (PMID: 31923554)
      Sci Robot. 2019 Jul 31;4(32):. (PMID: 32632399)
      Sci Robot. 2020 Jun 10;5(43):. (PMID: 33022613)
      Nature. 2001 Sep 6;413(6851):36-7. (PMID: 11544516)
      Nature. 2013 Apr 25;496(7446):445-55. (PMID: 23619691)
      Science. 2009 Jul 31;325(5940):612-6. (PMID: 19644120)
      Appl Microbiol Biotechnol. 2008 Apr;78(6):927-38. (PMID: 18330562)
      Nat Protoc. 2017 Jul;12(7):1295-1309. (PMID: 28569761)
      Sci Robot. 2021 Mar 17;6(52):. (PMID: 34043548)
      Annu Rev Nutr. 2008;28:35-54. (PMID: 18393659)
    • Publication Date:
      Date Created: 20230222 Date Completed: 20230224 Latest Revision: 20230307
    • Publication Date:
      20230307
    • Accession Number:
      PMC9946363
    • Accession Number:
      10.1126/sciadv.adc8978
    • Accession Number:
      36812317