The microtubule lattice: a brief historical perspective.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Chrétien D;Chrétien D; Guyomar C; Guyomar C
  • Source:
    Biology of the cell [Biol Cell] 2023 May; Vol. 115 (5), pp. e202300004. Date of Electronic Publication: 2023 Mar 06.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8108529 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1768-322X (Electronic) Linking ISSN: 02484900 NLM ISO Abbreviation: Biol Cell Subsets: MEDLINE
    • Publication Information:
      Publication: 2012- : Chichester : Wiley-Blackwell
      Original Publication: Ivry sur Seine France : Publié par la Société française de microscopie électronique avec le concours du Centre national de la recherche scientifique et de l'Institute national de la santé et de la recherche médicale, [1981-
    • Subject Terms:
    • Abstract:
      At first glance, the structure of a microtubule is simple. Globular α- and β-tubulin subunits form constitutive heterodimers that align head-to-tail in protofilaments. In the most common configuration, 13 protofilaments associate laterally with a slight longitudinal stagger that results in a left-handed 3-start helix featuring lateral associations between tubulin subunits. This seemingly straightforward description is actually based on almost half a century of research aimed at understanding how tubulin dimers interact within the microtubule lattice. But while we start to have a good overview of their architecture in vitro, our knowledge of microtubule-lattice organization in vivo is nowhere near to being complete.
      (© 2023 The Authors. Biology of the Cell published by Wiley-VCH GmbH on behalf of Société Française des Microscopies and Société de Biologie Cellulaire de France.)
    • References:
      Amos, L.A., & Klug, A. (1974) Arrangement of subunits in flagellar microtubules. Journal of Cell Science, 14(3), 523-549. https://doi.org/10.1242/jcs.14.3.523.
      Amos, L., & Klug, A. (1974) Arrangement of subunits in flagellar microtubules. Journal of Cell Science, 14(3), 523-549.
      Chaaban, S., & Brouhard, G.J. (2017) A microtubule bestiary : Structural diversity in tubulin polymers. Molecular Biology of the Cell, 28(22), 2924-2931. https://doi.org/10.1091/mbc.E16-05-0271.
      Chrétien, D., & Wade, R.H. (1991) New data on the microtubule surface lattice. Biology of the Cell, 71(1-2), 161-174. https://doi.org/10.1016/0248-4900(91)90062-r.
      Crepeau, R.H., McEwen, B., & Edelstein, S. J. (1978) Differences in alpha and beta polypeptide chains of tubulin resolved by electron microscopy with image reconstruction. Proceedings of the National Academy of Sciences of the United States of America, 75(10), 5006-5010. https://doi.org/10.1073/pnas.75.10.5006.
      Debs, G.E., Cha, M., Liu, X., Huehn, A.R., & Sindelar, C. V. (2020) Dynamic and asymmetric fluctuations in the microtubule wall captured by high-resolution cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 16976-16984. https://doi.org/10.1073/pnas.2001546117.
      des Georges, A., Katsuki, M., Drummond, D.R., Osei, M., Cross, R.A., & Amos, L.A. (2008) Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nature Structural & Molecular Biology, 15(10), 1102-1108. https://doi.org/10.1038/nsmb.1482.
      Gazzola, M., Schaeffer, A., Butler-Hallissey, C., Friedl, K., Vianay, B., Gaillard, J., Leterrier, C., Blanchoin, L., & Théry, M. (2023) Microtubules self-repair in living cells. Current Biology, 33(1), 122-133. https://doi.org/10.1016/j.cub.2022.11.060.
      Guyomar, C., Bousquet, C., Ku, S., Heumann, J. M., Guilloux, G., Gaillard, N., Heichette, C., Duchesne, L., Steinmetz, M.O., Gibeaux, R., & Chrétien, D. (2022) Changes in seam number and location induce holes within microtubules assembled from porcine brain tubulin and in Xenopus egg cytoplasmic extracts. ELife, 11, e83021. https://doi.org/10.7554/eLife.83021.
      Kikkawa, M., Ishikawa, T., Nakata, T., Wakabayashi, T., & Hirokawa, N. (1994) Direct visualization of the microtubule lattice seam both in vitro and in vivo. The Journal of Cell Biology, 127(6 Pt 2), 1965-1971. https://doi.org/10.1083/jcb.127.6.1965.
      McIntosh, J.R., Morphew, M.K., Grissom, P.M., Gilbert, S.P., & Hoenger, A. (2009) Lattice structure of cytoplasmic microtubules in a cultured mammalian cell. Journal of Molecular Biology, 394(2), 177-182. https://doi.org/10.1016/j.jmb.2009.09.033.
      Roll-Mecak, A. (2019) How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Current Opinion in Cell Biology, 56, 102-108. https://doi.org/10.1016/j.ceb.2018.10.009.
      Song, Y.H., & Mandelkow, E. (1993) Recombinant kinesin motor domain binds to beta-tubulin and decorates microtubules with a B surface lattice. Proceedings of the National Academy of Sciences of the United States of America, 90(5), 1671-1675. https://doi.org/10.1073/pnas.90.5.1671.
      Song, Y.H., & Mandelkow, E. (1995) The anatomy of flagellar microtubules : Polarity, seam, junctions, and lattice. The Journal of Cell Biology, 128(1-2), 81-94. https://doi.org/10.1083/jcb.128.1.81.
      Sosa, H., & Milligan, R.A. (1996) Three-dimensional structure of ncd-decorated microtubules obtained by a back-projection method. Journal of Molecular Biology, 260(5), 743-755. https://doi.org/10.1006/jmbi.1996.0434.
      Théry, M., & Blanchoin, L. (2021) Microtubule self-repair. Current Opinion in Cell Biology, 68, 144-154. https://doi.org/10.1016/j.ceb.2020.10.012.
      Wade, R. H., & Chrétien, D. (1993) Cryoelectron microscopy of microtubules. Journal of Structural Biology, 110(1), 1-27. https://doi.org/10.1006/jsbi.1993.1001.
    • Grant Information:
      ANR-16-C11-0017-01 French National Research Agency; ANR-18-CE13-0001-01 French National Research Agency
    • Accession Number:
      0 (Tubulin)
    • Publication Date:
      Date Created: 20230213 Date Completed: 20230518 Latest Revision: 20230518
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/boc.202300004
    • Accession Number:
      36775975