SLAMF7 regulates the inflammatory response in macrophages during polymicrobial sepsis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Society for Clinical Investigation Country of Publication: United States NLM ID: 7802877 Publication Model: Electronic Cited Medium: Internet ISSN: 1558-8238 (Electronic) Linking ISSN: 00219738 NLM ISO Abbreviation: J Clin Invest Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : Ann Arbor, MI : American Society for Clinical Investigation
      Original Publication: New Haven [etc.] American Society for Clinical Investigation.
    • Subject Terms:
    • Abstract:
      Uncontrolled inflammation occurred in sepsis results in multiple organ injuries and shock, which contributes to the death of patients with sepsis. However, the regulatory mechanisms that restrict excessive inflammation are still elusive. Here, we identified an Ig-like receptor called signaling lymphocyte activation molecular family 7 (SLAMF7) as a key suppressor of inflammation during sepsis. We found that the expression of SLAMF7 on monocytes/macrophages was significantly elevated in patients with sepsis and in septic mice. SLAMF7 attenuated TLR-dependent MAPK and NF-κB signaling activation in macrophages by cooperating with Src homology 2-containing inositol-5'‑phosphatase 1 (SHIP1). Furthermore, SLAMF7 interacted with SHIP1 and TNF receptor-associated factor 6 (TRAF6) to inhibit K63 ubiquitination of TRAF6. In addition, we found that tyrosine phosphorylation sites within the intracellular domain of SLAMF7 and the phosphatase domain of SHIP1 were indispensable for the interaction between SLAMF7, SHIP1, and TRAF6 and SLAMF7-mediated modulation of cytokine production. Finally, we demonstrated that SLAMF7 protected against lethal sepsis and endotoxemia by downregulating macrophage proinflammatory cytokines and suppressing inflammation-induced organ damage. Taken together, our findings reveal a negative regulatory role of SLAMF7 in polymicrobial sepsis, thus providing sights into the treatment of sepsis.
    • References:
      JAMA. 2016 Feb 23;315(8):801-10. (PMID: 26903338)
      Science. 2009 Aug 28;325(5944):1134-8. (PMID: 19713527)
      Cell. 2020 Mar 19;180(6):1044-1066. (PMID: 32164908)
      J Infect Dis. 2021 Mar 3;223(5):854-865. (PMID: 32702113)
      Immunogenetics. 2001;52(3-4):302-7. (PMID: 11220635)
      Nat Commun. 2017 Apr 04;8:14919. (PMID: 28374774)
      Nat Rev Immunol. 2013 Sep;13(9):679-92. (PMID: 23954936)
      Immunity. 2021 Sep 14;54(9):2024-2041.e8. (PMID: 34473957)
      Nat Rev Immunol. 2013 Aug;13(8):551-65. (PMID: 23846113)
      Mol Immunol. 2002 Sep;39(1-2):1-8. (PMID: 12213321)
      Ann N Y Acad Sci. 2013 Mar;1280:6-10. (PMID: 23551094)
      Nat Immunol. 2004 Oct;5(10):1052-60. (PMID: 15334086)
      J Immunol. 2005 Dec 15;175(12):7996-8002. (PMID: 16339536)
      Front Immunol. 2016 Jan 20;7:4. (PMID: 26834746)
      Expert Rev Hematol. 2018 May;11(5):423-435. (PMID: 29582696)
      Eur J Immunol. 2004 Oct;34(10):2791-9. (PMID: 15368295)
      Antioxid Redox Signal. 2021 Nov 20;35(15):1324-1339. (PMID: 33588628)
      Nat Rev Immunol. 2013 Dec;13(12):862-74. (PMID: 24232462)
      Nat Immunol. 2012 Apr 22;13(6):551-9. (PMID: 22522491)
      J Immunol. 2007 Oct 1;179(7):4672-8. (PMID: 17878365)
      J Clin Invest. 2019 Aug 5;129(9):3657-3669. (PMID: 31380807)
      Nat Immunol. 2009 Mar;10(3):297-305. (PMID: 19151721)
      Crit Care Med. 2016 Aug;44(8):1459-60. (PMID: 27428116)
      Vaccines (Basel). 2019 Nov 16;7(4):. (PMID: 31744090)
      J Biol Chem. 2006 Sep 8;281(36):26029-40. (PMID: 16831874)
      J Immunol. 2002 May 1;168(9):4737-46. (PMID: 11971024)
      Nat Rev Immunol. 2003 Oct;3(10):813-21. (PMID: 14523387)
      Lancet. 2013 Mar 2;381(9868):774-5. (PMID: 23472921)
      Immunity. 2004 Aug;21(2):227-39. (PMID: 15308103)
      Nat Immunol. 2010 Oct;11(10):920-7. (PMID: 20818396)
      Nat Rev Immunol. 2017 Jul;17(7):407-420. (PMID: 28436424)
      Crit Care. 2010;14(1):R15. (PMID: 20144219)
      Nat Rev Nephrol. 2018 Feb;14(2):121-137. (PMID: 29225343)
      Nature. 2001 Sep 6;413(6851):78-83. (PMID: 11544529)
      Immunity. 2007 Nov;27(5):698-710. (PMID: 18031694)
      Nature. 2003 Aug 14;424(6950):793-6. (PMID: 12917689)
      Cell Microbiol. 2007 Nov;9(11):2700-15. (PMID: 17608743)
      Nat Struct Mol Biol. 2011 Feb;18(2):135-41. (PMID: 21217702)
      STAR Protoc. 2021 Dec 08;2(4):101004. (PMID: 34917981)
      N Engl J Med. 2013 Aug 29;369(9):840-51. (PMID: 23984731)
      Lancet Infect Dis. 2019 Dec;19(12):e422-e436. (PMID: 31630991)
      Inflamm Res. 2013 Aug;62(8):765-72. (PMID: 23695528)
      Nat Rev Immunol. 2006 Jan;6(1):56-66. (PMID: 16493427)
      Arthritis Res Ther. 2013;15(6):R207. (PMID: 24299175)
      J Immunol. 2001 Nov 15;167(10):5517-21. (PMID: 11698418)
      Blood. 2017 Dec 28;130(26):2838-2847. (PMID: 29089311)
      Crit Care. 2004 Aug;8(4):R234-42. (PMID: 15312223)
      BMJ. 2016 May 23;353:i1585. (PMID: 27217054)
      Am J Cancer Res. 2017 Aug 01;7(8):1637-1641. (PMID: 28861320)
      Eur J Immunol. 2021 Feb;51(2):380-392. (PMID: 33080044)
      Lancet. 2018 Jul 7;392(10141):75-87. (PMID: 29937192)
      Crit Care Med. 2010 Aug;38(8):1718-25. (PMID: 20543670)
      Leukemia. 2020 Nov;34(11):3088-3090. (PMID: 32398792)
      Crit Care Med. 2010 Jan;38(1):72-83. (PMID: 19661804)
      Science. 2000 Aug 4;289(5480):785-8. (PMID: 10926542)
      PLoS One. 2013 Sep 30;8(9):e76681. (PMID: 24098802)
      Crit Care Med. 2003 Jun;31(6):1808-18. (PMID: 12794424)
      Trends Immunol. 2009 Oct;30(10):475-87. (PMID: 19781994)
      Blood. 2005 Jun 15;105(12):4685-92. (PMID: 15701712)
      Int Immunopharmacol. 2020 Dec;89(Pt B):107087. (PMID: 33075714)
      Nature. 1999 Sep 2;401(6748):82-5. (PMID: 10485710)
      JAMA. 2011 Dec 21;306(23):2594-605. (PMID: 22187279)
      J Leukoc Biol. 2012 Nov;92(5):977-85. (PMID: 22892106)
      N Engl J Med. 2015 Aug 13;373(7):621-31. (PMID: 26035255)
      FEBS Lett. 2006 May 29;580(13):3145-52. (PMID: 16697380)
      Eur J Immunol. 2003 Mar;33(3):597-605. (PMID: 12616480)
      J Immunol. 2019 Sep 1;203(5):1298-1312. (PMID: 31358659)
      Sci Adv. 2017 Apr 21;3(4):e1602296. (PMID: 28439546)
      J Immunol. 2012 Jul 15;189(2):786-92. (PMID: 22706086)
      Nat Rev Drug Discov. 2005 Oct;4(10):854-65. (PMID: 16224456)
      Front Immunol. 2018 Nov 05;9:2551. (PMID: 30455698)
      Nature. 2017 Apr 27;544(7651):493-497. (PMID: 28424516)
      J Immunol. 2019 Jan 1;202(1):228-238. (PMID: 30530590)
      Annu Rev Immunol. 2007;25:337-79. (PMID: 17201683)
      Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):335-9. (PMID: 21078302)
      Nat Rev Immunol. 2002 Oct;2(10):725-34. (PMID: 12360211)
      N Engl J Med. 2018 Nov 8;379(19):1811-1822. (PMID: 30403938)
      Crit Care. 1999;3(1):45-50. (PMID: 11056723)
      Mol Cell Biol. 2015 Jan;35(1):41-51. (PMID: 25312647)
      Nat Immunol. 2009 Sep;10(9):973-80. (PMID: 19648922)
      Cell. 2000 Oct 13;103(2):351-61. (PMID: 11057907)
      Immunity. 2014 Apr 17;40(4):501-14. (PMID: 24656836)
      Immunol Rev. 2001 Jun;181:234-49. (PMID: 11513145)
    • Contributed Indexing:
      Keywords: Bacterial infections; Infectious disease; Inflammation; Macrophages
    • Accession Number:
      0 (NF-kappa B)
      EC 3.1.3.2 (Phosphoric Monoester Hydrolases)
      0 (TNF Receptor-Associated Factor 6)
      0 (Slamf7 protein, mouse)
    • Publication Date:
      Date Created: 20230207 Date Completed: 20230320 Latest Revision: 20230401
    • Publication Date:
      20240829
    • Accession Number:
      PMC10014109
    • Accession Number:
      10.1172/JCI150224
    • Accession Number:
      36749634