Adaptation of Pseudomonas aeruginosa biofilms to tobramycin and the quorum sensing inhibitor C-30 during experimental evolution requires multiple genotypic and phenotypic changes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Microbiology Society Country of Publication: England NLM ID: 9430468 Publication Model: Print Cited Medium: Internet ISSN: 1465-2080 (Electronic) Linking ISSN: 13500872 NLM ISO Abbreviation: Microbiology (Reading) Subsets: MEDLINE
    • Publication Information:
      Publication: 2015- : London : Microbiology Society
      Original Publication: Reading, U.K. : Society for General Microbiology, c1994-
    • Subject Terms:
    • Abstract:
      In the present study we evaluated the fitness, antimicrobial susceptibility, metabolic activity, gene expression, in vitro production of virulence factors and in vivo virulence of experimentally evolved Pseudomonas aeruginosa PAO1. These strains were previously evolved in the presence of tobramycin and the quorum sensing inhibitor furanone C-30 (C-30) and carried mutations in mexT and fusA1 . Compared to the wild-type (WT), the evolved strains show a different growth rate and different metabolic activity, suggesting they have an altered fitness. mexT mutants were less susceptible to C-30 than WT strains; they also show reduced susceptibility to chloramphenicol and ciprofloxacin, two substrates of the MexEF-OprN efflux pump. fusA1 mutants had a decreased susceptibility to aminoglycoside antibiotics, and an increased susceptibility to chloramphenicol. The decreased antimicrobial susceptibility and decreased susceptibility to C-30 was accompanied by a changed metabolic activity profile during treatment. The expression of mexE was significantly increased in mexT mutants and induced by C-30, suggesting that MexEF-OprN exports C-30 out of the bacterial cell. The in vitro production of virulence factors as well as virulence in two in vivo models of the strains evolved in the presence of C-30 was unchanged compared to the virulence of the WT. Finally, the evolved strains were less susceptible towards tobramycin (alone and combined with C-30) in an in vivo mouse model. In conclusion, this study shows that mutations acquired during experimental evolution of P. aeruginosa biofilms in the presence of tobramycin and C-30, are accompanied by an altered fitness, metabolism, mexE expression and in vitro and in vivo antimicrobial susceptibility.
    • References:
      mBio. 2020 May 26;11(3):. (PMID: 32457248)
      Trends Microbiol. 2018 Apr;26(4):313-328. (PMID: 29132819)
      Cell Rep. 2022 Oct 18;41(3):111515. (PMID: 36260996)
      Front Microbiol. 2019 May 03;10:913. (PMID: 31130925)
      FEMS Microbiol Lett. 2005 Jun 15;247(2):215-20. (PMID: 15935566)
      Antimicrob Agents Chemother. 2011 Jun;55(6):2655-61. (PMID: 21422204)
      J Bacteriol. 2005 Feb;187(4):1246-53. (PMID: 15687188)
      BMC Microbiol. 2008 Sep 16;8:149. (PMID: 18793453)
      Pathog Dis. 2013 Jun;68(1):8-11. (PMID: 23620228)
      Microbiology (Reading). 2022 Mar;168(3):. (PMID: 35358034)
      Microbiol Immunol. 2013 Apr;57(4):263-72. (PMID: 23586630)
      Antimicrob Agents Chemother. 2011 Dec;55(12):5676-84. (PMID: 21911574)
      J Biol Chem. 2020 Nov 27;295(48):16411-16426. (PMID: 32943550)
      Environ Microbiol. 2018 Nov;20(11):3918-3926. (PMID: 30318710)
      Cell Metab. 2019 Aug 6;30(2):251-259. (PMID: 31279676)
      ISME J. 2012 Mar;6(3):493-501. (PMID: 21918575)
      Methods Mol Biol. 2014;1149:67-72. (PMID: 24818898)
      J Med Microbiol. 2020 Jan;69(1):139-145. (PMID: 31859619)
      J Antimicrob Chemother. 2004 Jun;53(6):1054-61. (PMID: 15117922)
      Curr Pharm Des. 2015;21(1):5-11. (PMID: 25189863)
      J Antimicrob Chemother. 2021 Mar 12;76(4):1001-1009. (PMID: 33442721)
      Mol Cells. 2019 Dec 31;42(12):850-857. (PMID: 31722511)
      Trends Microbiol. 2013 Dec;21(12):619-24. (PMID: 24126008)
      J Bacteriol. 2001 Sep;183(18):5213-22. (PMID: 11514502)
      Dent J. 1976 Nov;42(11):555-8. (PMID: 1068133)
      Clin Microbiol Rev. 2021 Dec 15;34(4):e0005019. (PMID: 34190572)
      Trends Microbiol. 2019 Oct;27(10):850-863. (PMID: 31178124)
      FEMS Microbiol Lett. 2010 Feb;303(1):1-8. (PMID: 19895644)
      Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0187521. (PMID: 34807756)
      Antimicrob Agents Chemother. 2018 Apr 26;62(5):. (PMID: 29530852)
      Antibiotics (Basel). 2013 Mar 18;2(1):163-81. (PMID: 27029297)
      PLoS Biol. 2020 Aug 18;18(8):e3000805. (PMID: 32810152)
      Antimicrob Agents Chemother. 2018 Jan 25;62(2):. (PMID: 29133559)
      Genome Biol Evol. 2018 Feb 1;10(2):667-679. (PMID: 29432584)
      Biotechnol Adv. 2019 Jan - Feb;37(1):177-192. (PMID: 30500353)
      Microb Pathog. 2009 Oct;47(4):237-41. (PMID: 19683048)
      Curr Opin Microbiol. 2020 Oct;57:78-86. (PMID: 32916624)
      Pathog Dis. 2014 Apr;70(3):321-31. (PMID: 24436195)
      J Bacteriol. 2011 Jan;193(2):399-410. (PMID: 21075931)
      Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70. (PMID: 25969447)
      EMBO J. 2003 Aug 1;22(15):3803-15. (PMID: 12881415)
      WormBook. 2006 Feb 11;:1-11. (PMID: 18050451)
      Science. 2021 Feb 19;371(6531):. (PMID: 33602825)
      Cell Rep. 2019 Nov 5;29(6):1707-1717.e3. (PMID: 31693906)
      Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2100-9. (PMID: 24803433)
      Front Microbiol. 2018 Aug 21;9:1952. (PMID: 30186266)
      Nat Microbiol. 2019 Dec;4(12):2109-2117. (PMID: 31451773)
      Sci Rep. 2019 Sep 6;9(1):12859. (PMID: 31492943)
      Antimicrob Agents Chemother. 2011 Feb;55(2):508-14. (PMID: 21078928)
      Front Cell Infect Microbiol. 2019 Apr 02;9:74. (PMID: 31001485)
      Pathog Dis. 2015 Aug;73(6):ftv040. (PMID: 26048733)
      Microbiology (Reading). 2002 Jan;148(Pt 1):87-102. (PMID: 11782502)
      FEMS Microbiol Lett. 2006 Jan;254(2):217-25. (PMID: 16445748)
      Microbiology (Reading). 1999 Feb;145 ( Pt 2):283-291. (PMID: 10075410)
      Front Microbiol. 2015 Jan 21;6:8. (PMID: 25653649)
      Int J Mol Sci. 2019 Apr 13;20(8):. (PMID: 31013936)
      J Antimicrob Chemother. 2012 May;67(5):1198-206. (PMID: 22302561)
      Front Microbiol. 2017 May 24;8:893. (PMID: 28596757)
      APMIS. 2021 Apr;129(4):213-224. (PMID: 33471435)
      Antimicrob Agents Chemother. 1990 Sep;34(9):1757-61. (PMID: 2126688)
      Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0041321. (PMID: 33903100)
    • Contributed Indexing:
      Keywords: Pseudomonas aeruginosa; antimicrobial resistance; experimental evolution
    • Accession Number:
      VZ8RRZ51VK (Tobramycin)
      0 (Anti-Bacterial Agents)
      0 (Virulence Factors)
      66974FR9Q1 (Chloramphenicol)
      0 (Bacterial Proteins)
    • Publication Date:
      Date Created: 20230207 Date Completed: 20230208 Latest Revision: 20230317
    • Publication Date:
      20231215
    • Accession Number:
      PMC9993117
    • Accession Number:
      10.1099/mic.0.001278
    • Accession Number:
      36748633