Menu
×
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Sirtuins and their influence on autophagy.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Baeken MW;Baeken MW
- Source:
Journal of cellular biochemistry [J Cell Biochem] 2024 Nov; Vol. 125 (11), pp. e30377. Date of Electronic Publication: 2023 Feb 06.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8205768 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4644 (Electronic) Linking ISSN: 07302312 NLM ISO Abbreviation: J Cell Biochem Subsets: MEDLINE
- Publication Information: Publication: <2004>- : Hoboken, NJ : Wiley-Liss
Original Publication: New York : Liss, c1982- - Subject Terms:
- Abstract: Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
(© 2023 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals LLC.) - References: Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464‐471. doi:10.1016/j.tcb.2014.04.002.
Baeken MW, Schwarz M, Kern A, Moosmann B, Hajieva P, Behl C. The selective degradation of sirtuins via macroautophagy in the MPP+ model of Parkinson's disease is promoted by conserved oxidation sites. Cell Death Discov. 2021;7(1):286. doi:10.1038/s41420-021-00683-x.
Vaziri H, Dessain SK, Eaton EN, et al. hSIR2(SIRT1) functions as an NAD‐dependent p53 deacetylase. Cell. 2001;107(2):149‐159. doi:10.1016/s0092-8674(01)00527-x.
Fukuda M, Yoshizawa T, Karim MF, et al. SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nat Commun. 2018;9(1):2833. doi:10.1038/s41467-018-05187-4.
Du J, Zhou Y, Su X, et al. Sirt5 is a NAD‐dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806‐809. doi:10.1126/science.1207861.
Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell. 2006;126(5):941‐954. doi:10.1016/j.cell.2006.06.057.
Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD‐dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105(9):3374‐3379. doi:10.1073/pnas.0712145105.
Morselli E, Galluzzi L, Kepp O, et al. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging. 2009;1(12):961‐970. doi:10.18632/aging.100110.
Füllgrabe J, Klionsky DJ, Joseph B. Histone post‐translational modifications regulate autophagy flux and outcome. Autophagy. 2013;9(10):1621‐1623. doi:10.4161/auto.25803.
Fang EF, Scheibye‐Knudsen M, Brace LE, et al. Defective mitophagy in XPA via PARP‐1 hyperactivation and NAD(+)/SIRT1 reduction. Cell. 2014;157(4):882‐896. doi:10.1016/j.cell.2014.03.026.
Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation‐induced autophagy in cardiac myocytes. Circ Res. 2010;107(12):1470‐1482. doi:10.1161/CIRCRESAHA.110.227371.
Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1‐dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest. 2010;120(4):1043‐1055. doi:10.1172/JCI41376.
Morselli E, Maiuri MC, Markaki M, et al. The life span‐prolonging effect of sirtuin‐1 is mediated by autophagy. Autophagy. 2010;6(1):186‐188. doi:10.4161/auto.6.1.10817.
Jang S, Kang HT, Hwang ES. Nicotinamide‐induced mitophagy. J Biol Chem. 2012;287(23):19304‐19314. doi:10.1074/jbc.M112.363747.
Fang EF, Kassahun H, Croteau DL, et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 2016;24(4):566‐581. doi:10.1016/j.cmet.2016.09.004.
Chang C, Su H, Zhang D, et al. AMPK‐dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell. 2015;60(6):930‐940. doi:10.1016/j.molcel.2015.10.037.
Huang R, Xu Y, Wan W, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015;57(3):456‐466. doi:10.1016/j.molcel.2014.12.013.
Baeken MW, Weckmann K, Diefenthäler P, et al. Novel insights into the cellular localization and regulation of the autophagosomal proteins LC3A, LC3B and LC3C. Cells. 2020;9(10):2315. doi:10.3390/cells9102315.
Wan R, Yuan P, Guo L, et al. Ubiquitin‐like protein FAT10 suppresses SIRT1‐mediated autophagy to protect against ischemic myocardial injury. J Mol Cell Cardiol. 2021;153:1‐13. doi:10.1016/j.yjmcc.2020.11.007.
Ventura M, Mateo F, Serratosa J, et al. Nuclear translocation of glyceraldehyde‐3‐phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol. 2010;42(10):1672‐1680. doi:10.1016/j.biocel.2010.06.014.
Joo HY, Woo SR, Shen YN, et al. SIRT1 interacts with and protects glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) from nuclear translocation: implications for cell survival after irradiation. Biochem Biophys Res Commun. 2012;424(4):681‐686. doi:10.1016/j.bbrc.2012.07.006.
Sun T, Li X, Zhang P, et al. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 2015;6:7215. doi:10.1038/ncomms8215.
García‐Aguilar A, Guillén C, Nellist M, Bartolomé A, Benito M. TSC2 N‐terminal lysine acetylation status affects to its stability modulating mTORC1 signaling and autophagy. Biochimica et Biophysica Acta (BBA) ‐ Mol Cell Res. 2016;1863(11):2658‐2667. doi:10.1016/j.bbamcr.2016.08.006.
Rickenbacher A, Jang JH, Limani P, et al. Fasting protects liver from ischemic injury through Sirt1‐mediated downregulation of circulating HMGB1 in mice. J Hepatol. 2014;61(2):301‐308. doi:10.1016/j.jhep.2014.04.010.
Štros M. HMGB proteins: interactions with DNA and chromatin. Biochimica et Biophysica Acta (BBA) ‐ Gene Regul Mech. 2010;1799(1‐2):101‐113. doi:10.1016/j.bbagrm.2009.09.008.
Hwang JS, Choi HS, Ham SA, et al. Deacetylation‐mediated interaction of SIRT1‐HMGB1 improves survival in a mouse model of endotoxemia. Sci Rep. 2015;5:15971. doi:10.1038/srep15971.
Sathyanarayan A, Mashek MT, Mashek DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 2017;19(1):1‐9. doi:10.1016/j.celrep.2017.03.026.
Panda PK, Patra S, Naik PP, et al. Deacetylation of LAMP1 drives lipophagy‐dependent generation of free fatty acids by Abrus agglutinin to promote senescence in prostate cancer. J Cell Physiol. 2020;235(3):2776‐2791. doi:10.1002/jcp.29182.
Powell MJ, Casimiro MC, Cordon‐Cardo C, et al. Disruption of a Sirt1‐dependent autophagy checkpoint in the prostate results in prostatic intraepithelial neoplasia lesion formation. Cancer Res. 2011;71(3):964‐975. doi:10.1158/0008-5472.CAN-10-3172.
Fu M, Liu M, Sauve AA, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol. 2006;26(21):8122‐8135. doi:10.1128/MCB.00289-06.
Sakamaki J, Wilkinson S, Hahn M, et al. Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol Cell. 2017;66(4):517‐532. doi:10.1016/j.molcel.2017.04.027.
Kim S, Lee JY, Shin SG, et al. ESRRA (estrogen related receptor alpha) is a critical regulator of intestinal homeostasis through activation of autophagic flux via gut microbiota. Autophagy. 2021;17(10):2856‐2875. doi:10.1080/15548627.2020.1847460.
Liu X, Cai S, Zhang C, et al. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res. 2018;46(18):9601‐9616. doi:10.1093/nar/gky777.
Wu X, Ren Y, Wen Y, et al. Deacetylation of ZKSCAN3 by SIRT1 induces autophagy and protects SN4741 cells against MPP+‐induced oxidative stress. Free Radic Biol Med. 2022;181:82‐97. doi:10.1016/j.freeradbiomed.2022.02.001.
Xu C, Wang L, Fozouni P, et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nature Cell Biol. 2020;22(10):1170‐1179. doi:10.1038/s41556-020-00579-5.
Li J, Li M, Wang C, et al. NaSH increases SIRT1 activity and autophagy flux through sulfhydration to protect SH‐SY5Y cells induced by MPP~. Cell Cycle. 2020;19(17):2216‐2225. doi:10.1080/15384101.2020.1804179.
Zivanovic J, Kouroussis E, Kohl JB, et al. Selective persulfide detection reveals evolutionarily conserved antiaging effects of S‐sulfhydration. Cell Metab. 2019;30(6):1152‐1170. doi:10.1016/j.cmet.2019.10.007.
Wang KX, Yan C, Yang X, et al. Enhanced autophagy promotes radiosensitivity by mediating Sirt1 downregulation in RM‐1 prostate cancer cells. Biochem Biophys Res Commun. 2022;609:84‐92. doi:10.1016/j.bbrc.2022.03.142.
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: controversy and multiple roles in disease and physiology. Ageing Res Rev. 2019;55:100961. doi:10.1016/j.arr.2019.100961.
North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+‐dependent tubulin deacetylase. Mol Cell. 2003;11(2):437‐444. doi:10.1016/s1097-2765(03)00038-8.
Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD‐dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23(9):3173‐3185. doi:10.1128/MCB.23.9.3173-3185.2003.
Inoue T, Hiratsuka M, Osaki M, et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene. 2007;26(7):945‐957. doi:10.1038/sj.onc.1209857.
Xu D, Jiang X, He H, et al. SIRT2 functions in aging, autophagy, and apoptosis in post‐maturation bovine oocytes. Life Sci. 2019;232:116639. doi:10.1016/j.lfs.2019.116639.
Han Z, Chang C, Zhu W, et al. Role of SIRT2 in regulating the dexamethasone‐activated autophagy pathway in skeletal muscle atrophy. Biochem Cell Biol. 2021;99(5):562‐569. doi:10.1139/bcb-2020-0445.
Inoue T, Nakayama Y, Li Y, et al. SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors. FEBS J. 2014;281(11):2623‐2637. doi:10.1111/febs.12810.
Roychowdhury S, Gandhirajan A, Kibler C, Wang X, Vachharajani V. Sirtuin 2 dysregulates autophagy in hgh‐fat‐exposed immune‐tolerant macrophages. Cells. 2021;10(4):731. doi:10.3390/cells10040731.
Silva DF, Esteves AR, Oliveira CR, Cardoso SM. Mitochondrial metabolism power SIRT2‐dependent deficient traffic causing Alzheimer's disease related pathology. Mol Neurobiol. 2017;54(6):4021‐4040. doi:10.1007/s12035-016-9951-x.
Zhao D, Zou SW, Liu Y, et al. Lysine‐5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 2013;23(4):464‐476. doi:10.1016/j.ccr.2013.02.005.
Xiong H, Sun L, Lian J, He F. Involvement of acetylation of ATG4B in controlling autophagy induction. Autophagy. 2022;2:1‐3. doi:10.1080/15548627.2022.2117887.
Sun F, Jiang X, Wang X, et al. Vincristine ablation of Sirt2 induces cell apoptosis and mitophagy via Hsp70 acetylation in MDA‐MB‐231 cells. Biochem Pharmacol. 2019;162:142‐153. doi:10.1016/j.bcp.2018.10.021.
Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807‐8814. doi:10.1128/MCB.01636-07.
Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44(2):177‐190. doi:10.1016/j.molcel.2011.07.019.
Webster BR, Scott I, Han K, et al. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J Cell Sci. 2013;21:4843‐4849. doi:10.1242/jcs.131300.
Zhang T, Liu J, Shen S, Tong Q, Ma X, Lin L. SIRT3 promotes lipophagy and chaperon‐mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death Differ. 2020;27(1):329‐344. doi:10.1038/s41418-019-0356-z.
Huang L, Zeng X, Li B, et al. Dihydromyricetin attenuates palmitic acid‐induced oxidative stress by promoting autophagy via SIRT3‐ATG4B signaling in hepatocytes. Nutr Metab (Lond). 2021;18(1):83. doi:10.1186/s12986-021-00612-w.
Yan WJ, Liu RB, Wang LK, et al. Sirt3‐mediated autophagy contributes to resveratrol‐induced protection against ER stress in HT22 cells. Front Neurosci. 2018;12:116. doi:10.3389/fnins.2018.00116.
Martino E, Balestrieri A, Anastasio C, et al. SIRT3 modulates endothelial mitochondrial redox state during insulin resistance. Antioxidants. 2022;11(8):1611. doi:10.3390/antiox11081611.
Kincaid B, Bossy‐Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci. 2013;5:48. doi:10.3389/fnagi.2013.00048.
Wei Z, Song J, Wang G, et al. Deacetylation of serine hydroxymethyl‐transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun. 2018;9(1):4468. doi:10.1038/s41467-018-06812-y.
Zhang Y, Xu YY, Yao CB, et al. Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone. Autophagy. 2017;13(3):538‐553. doi:10.1080/15548627.2016.1268302.
Li J, Chen T, Xiao M, et al. Mouse Sirt3 promotes autophagy in AngII‐induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget. 2016;7(52):86648‐86659. doi:10.18632/oncotarget.13429.
Peng Y, Yang C, Shi X, et al. Retraction note: Sirt3 suppresses calcium oxalate‐induced renal tubular epithelial cell injury via modification of FoxO3a‐mediated autophagy. Cell Death Dis. 2020;11(2):113. doi:10.1038/s41419-020-2318-2.
Kim TS, Jin YB, Kim YS, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy. 2019;15(8):1356‐1375. doi:10.1080/15548627.2019.1582743.
Wang Y, Chang J, Wang ZQ, Li Y. Sirt3 promotes the autophagy of HK‑2 human proximal tubular epithelial cells via the inhibition of Notch‑1/Hes‑1 signaling. Mol Med Rep. 2021;24(3):634. doi:10.3892/mmr.2021.12273.
Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 2013;50(5):686‐698. doi:10.1016/j.molcel.2013.05.012.
Lang A, Anand R, Altinoluk‐Hambüchen S, et al. SIRT4 interacts with OPA1 and regulates mitochondrial quality control and mitophagy. Aging. 2017;9(10):2163‐2189. doi:10.18632/aging.101307.
Li J, Zhan H, Ren Y, et al. Sirtuin 4 activates autophagy and inhibits tumorigenesis by upregulating the p53 signaling pathway. Cell Death Differ. Published online October 8, 2022. doi:10.1038/s41418-022-01063-3.
Shaw E, Talwadekar M, Rashida Z, et al. Anabolic SIRT4 exerts retrograde control over TORC1 signaling by glutamine sparing in the mitochondria. Mol Cell Biol. 2020;40(2):e00212‐e00219. doi:10.1128/MCB.00212-19.
Csibi A, Fendt SM, Li C, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153(4):840‐854. doi:10.1016/j.cell.2013.04.023.
Liu M, Wang Z, Ren M, et al. SIRT4 regulates PTEN stability through IDE in response to cellular stresses. FASEB J. 2019;33(4):5535‐5547. doi:10.1096/fj.201801987R.
Ahuja N, Schwer B, Carobbio S, et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP‐ribosyltransferase. J Biol Chem. 2007;282(46):33583‐33592. doi:10.1074/jbc.M705488200.
Huang H, Ouyang Q, Mei K, et al. Acetylation of SCFD1 regulates SNARE complex formation and autophagosome‐lysosome fusion. Autophagy. 2022;19:189‐203. doi:10.1080/15548627.2022.2064624.
Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137(3):560‐570. doi:10.1016/j.cell.2009.02.026.
Tan M, Peng C, Anderson KA, et al. Lysine glutarylation is a protein post‐translational modification regulated by SIRT5. Cell Metab. 2014;19(4):605‐617. doi:10.1016/j.cmet.2014.03.014.
Polletta L, Vernucci E, Carnevale I, et al. SIRT5 regulation of ammonia‐induced autophagy and mitophagy. Autophagy. 2015;11(2):253‐270. doi:10.1080/15548627.2015.1009778.
Niknahad H, Jamshidzadeh A, Heidari R, Zarei M, Ommati MM. Ammonia‐induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin Exp Hepatol. 2017;3(3):141‐151. doi:10.5114/ceh.2017.68833.
Kang JW, Hong JM, Lee SM. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride‐induced liver fibrosis. J Pineal Res. 2016;60(4):383‐393. doi:10.1111/jpi.12319.
Zhao S, Wang JM, Yan J, et al. BAG3 promotes autophagy and glutaminolysis via stabilizing glutaminase. Cell Death Dis. 2019;10(4):284. doi:10.1038/s41419-019-1504-6.
Gu W, Qian Q, Xu Y, et al. SIRT5 regulates autophagy and apoptosis in gastric cancer cells. J Int Med Res. 2021;49(2):030006052098635. doi:10.1177/0300060520986355.
Zhang M, Wu J, Sun R, et al. SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS One. 2019;14(2):e0211796. doi:10.1371/journal.pone.0211796.
Shi L, Yan H, An S, et al. SIRT5‐mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer. Mol Oncol. 2019;13(2):358‐375. doi:10.1002/1878-0261.12408.
Brisson L, Bański P, Sboarina M, et al. Lactate dehydrogenase B controls lysosome activity and autophagy in cancer. Cancer Cell. 2016;30(3):418‐431. doi:10.1016/j.ccell.2016.08.005.
Wu S, Wei Y, Li J, Bai Y, Yin P, Wang S. SIRT5 represses neurotrophic pathways and Aβ production in Alzheimer's disease by targeting autophagy. ACS Chem Neurosci. 2021;12(23):4428‐4437. doi:10.1021/acschemneuro.1c00468.
Lee JH, Yang DS, Goulbourne CN, et al. Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build‐up of Aβ in neurons, yielding senile plaques. Nature Neurosci. 2022;25(6):688‐701. doi:10.1038/s41593-022-01084-8.
Mao Z, Hine C, Tian X, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443‐1446. doi:10.1126/science.1202723.
Elhanati S, Kanfi Y, Varvak A, et al. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep. 2013;4(5):905‐912. doi:10.1016/j.celrep.2013.08.006.
Liu M, Liang K, Zhen J, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun. 2017;8(1):413. doi:10.1038/s41467-017-00498-4.
Chen X, Zhang Y, Shi Y, et al. MiR‐129 triggers autophagic flux by regulating a novel Notch‐1/E2F7/Beclin‐1 axis to impair the viability of human malignant glioma cells. Oncotarget. 2016;7(8):9222‐9235. doi:10.18632/oncotarget.7003.
Tong J, Ji B, Gao YH, et al. Sirt6 regulates autophagy in AGE‐treated endothelial cells via KLF4. Nutr Metab Cardiovasc Dis. 2022;32(3):755‐764. doi:10.1016/j.numecd.2021.12.020.
Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF‐Akt signaling and development of cardiac hypertrophy by targeting c‐Jun. Nature Med. 2012;18(11):1643‐1650. doi:10.1038/nm.2961.
Wang S, Gu K. Insulin‐like growth factor 1 inhibits autophagy of human colorectal carcinoma drug‐resistant cells via the protein kinase B/mammalian target of rapamycin signaling pathway. Mol Med Rep. 2017;17(2):2952‐2956. doi:10.3892/mmr.2017.8272.
He J, Zhang G, Pang Q, et al. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox‐LDL condition. FEBS J. 2017;284(9):1324‐1337. doi:10.1111/febs.14055.
Zhao Y, Jia X, Yang X, et al. Deacetylation of Caveolin‐1 by Sirt6 induces autophagy and retards high glucose‐stimulated LDL transcytosis and atherosclerosis formation. Metabolism. 2022;131:155162. doi:10.1016/j.metabol.2022.155162.
Kong Q, Li Y, Liang Q, Xie J, Li X, Fang J. SIRT6‐PARP1 is involved in HMGB1 polyADP‐ribosylation and acetylation and promotes chemotherapy‐induced autophagy in leukemia. Cancer Biol Ther. 2020;21(4):320‐331. doi:10.1080/15384047.2019.1702397.
Tang D, Kang R, Livesey KM, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190(5):881‐892. doi:10.1083/jcb.200911078.
Han LL, Jia L, Wu F, Huang C. Sirtuin6 (SIRT6) promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E‐cadherin. Mol Cancer Res. 2019;17(11):2267‐2280. doi:10.1158/1541-7786.MCR-19-0321.
So KY, Park BH, Oh SH. Cytoplasmic Sirtuin 6 translocation mediated by p62 polyubiquitination plays a critical role in cadmium‐induced kidney toxicity. Cell Biol Toxicol. 2021;37(2):193‐207. doi:10.1007/s10565-020-09528-2.
Garcia‐Peterson LM, Ndiaye MA, Singh CK, Chhabra G, Huang W, Ahmad N. SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. Genes Cancer. 2017;8(9‐10):701‐712. doi:10.18632/genesandcancer.153.
Yang Z, Huang R, Wei X, Yu W, Min Z, Ye M. The SIRT6‐autophagy‐warburg effect axis in papillary thyroid cancer. Front Oncol. 2020;10:1265. doi:10.3389/fonc.2020.01265.
Iachettini S, Trisciuoglio D, Rotili D, et al. Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells. Cell Death Dis. 2018;9(10):996. doi:10.1038/s41419-018-1065-0.
Wang T, Sun C, Hu L, et al. Sirt6 stabilizes atherosclerosis plaques by promoting macrophage autophagy and reducing contact with endothelial cells. Biochem Cell Biol. 2020;98(2):120‐129. doi:10.1139/bcb-2019-0057.
Kiran S, Chatterjee N, Singh S, Kaul SC, Wadhwa R, Ramakrishna G. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 2013;280(14):3451‐3466. doi:10.1111/febs.12346.
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075‐1080. doi:10.1101/gad.1399706.
Wu MH, Hui SC, Chen YS, et al. Norcantharidin combined with paclitaxel induces endoplasmic reticulum stress mediated apoptotic effect in prostate cancer cells by targeting SIRT7 expression. Environ Toxicol. 2021;36(11):2206‐2216. doi:10.1002/tox.23334.
Ding M, Jiang CY, Zhang Y, Zhao J, Han BM, Xia SJ. SIRT7 depletion inhibits cell proliferation and androgen‐induced autophagy by suppressing the AR signaling in prostate cancer. J Exp Clin Cancer Res. 2020;39(1):28. doi:10.1186/s13046-019-1516-1.
Nollet EA, Cardo‐Vila M, Ganguly SS, et al. Androgen receptor‐induced integrin α6β1 and Bnip3 promote survival and resistance to PI3K inhibitors in castration‐resistant prostate cancer. Oncogene. 2020;39(31):5390‐5404. doi:10.1038/s41388-020-1370-9.
Wu SY, Du YC, Yue CF. Sirt7 protects chondrocytes degeneration in osteoarthritis via autophagy activation. Eur Rev Med Pharmacol Sci. 2020;24(18):9246‐9255. doi:10.26355/eurrev_202009_23006.
Ma WH, Zhang XG, Guo LL, et al. Androgen receptor inhibition alleviated inflammation in experimental autoimmune myocarditis by increasing autophagy in macrophages. Eur Rev Med Pharmacol Sci. 2021;25(10):3762‐3771. doi:10.26355/eurrev_202105_25944.
Hao K, Zhao S, Cui D, et al. Androgen receptor antagonist bicalutamide induces autophagy and apoptosis via ULK2 upregulation in human bladder cancer cells. Int J Clin Exp Pathol. 2017;10(7):7603‐7615.
Araki S, Izumiya Y, Rokutanda T, et al. Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor‐β signaling pathway. Circulation. 2015;132(12):1081‐1093. doi:10.1161/CIRCULATIONAHA.114.014821.
Li M, Xiong J, Yang L, et al. Acetylation of p62 regulates base excision repair through interaction with APE1. Cell Rep. 2022;40(3):111116. doi:10.1016/j.celrep.2022.111116.
Liu X, Chen J, Long X, et al. RSL1D1 promotes the progression of colorectal cancer through RAN‐mediated autophagy suppression. Cell Death Dis. 2022;13(1):43. doi:10.1038/s41419-021-04492-z.
Sobuz SU, Sato Y, Yoshizawa T, et al. SIRT7 regulates the nuclear export of NF‐κB p65 by deacetylating Ran. Biochimica et Biophysica Acta (BBA) ‐ Mol Cell Res. 2019;1866(9):1355‐1367. doi:10.1016/j.bbamcr.2019.05.001.
Jiang Y, Han Z, Wang Y, Hao W. Depletion of SIRT7 sensitizes human non‐small cell lung cancer cells to gemcitabine therapy by inhibiting autophagy. Biochem Biophys Res Commun. 2018;506(1):266‐271. doi:10.1016/j.bbrc.2018.10.089.
Simonet NG, Thackray JK, Vazquez BN, et al. SirT7 auto‐ADP‐ribosylation regulates glucose starvation response through mH2A1. Sci Adv. 2020;6(30):eaaz2590. doi:10.1126/sciadv.aaz2590. - Contributed Indexing: Keywords: HDAC; SIRT1; acetylation; autophagy; sirtuins
- Accession Number: EC 3.5.1.- (Sirtuins)
0 (Transcription Factors) - Publication Date: Date Created: 20230206 Date Completed: 20241112 Latest Revision: 20241112
- Publication Date: 20241114
- Accession Number: 10.1002/jcb.30377
- Accession Number: 36745668
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.