Design of encapsulation method for chlorogenic acid and caffeine in coffee waste by-product.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 9200492 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1565 (Electronic) Linking ISSN: 09580344 NLM ISO Abbreviation: Phytochem Anal Subsets: MEDLINE
    • Publication Information:
      Original Publication: Chichester, Sussex, UK : Wiley, c1990-
    • Subject Terms:
    • Abstract:
      Introduction: Coffee silver skin (CSS) is a thin covering over green coffee seeds inside coffee cherry. It is a good source of bioactive compounds like chlorogenic acid and caffeine. It is produced as a by-product of the roasting process.
      Objective: The goal of this study is to apply spray drying method to encapsulate 5-O-caffeoylquinic acid (chlorogenic acid) and caffeine extracted from CSS.
      Methods: The main-plots for optimisation were feed solid concentration (2.5, 5, 10°Bx), and the sub-plots of the whole-plot were carrier material type (maltodextrin, modified starch, arabic gum) and inlet air temperature (130, 160, 190°C). Responses included were drying yield, chlorogenic acid concentration, caffeine content, Carr index, and solubility values.
      Results: Suitable conditions were spray drying inlet temperature of 190°C, extract concentration of 10°Bx, and wall material composition [modified starch/arabic gum (MS:AG)] 10.5:9.5. As the feeding CSS extract concentration increased, the amount of chlorogenic acid and caffeine in the final powder increased, while the powder's flow characteristics improved.
      Conclusions: The concentration stage might be used to produce free-flowing powdered particles with good bioactive retention for use in the food processing industry.
      (© 2023 John Wiley & Sons Ltd.)
    • References:
      Butt MS, Sultan MT. Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2011;51(4):363‐373. doi:10.1080/10408390903586412.
      Hu G, Peng X, Gao Y, et al. Effect of roasting degree of coffee beans on sensory evaluation: research from the perspective of major chemical ingredients. Food Chem. 2020;331:127329. doi:10.1016/j.foodchem.2020.127329.
      International coffee organisation (ICO). Total production ‐ crop year. 2022. https://www.ico.org/prices/po-production.pdf.
      Cagliani LR, Pellegrino G, Giugno G, Consonni R. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Talanta. 2013;106:169‐173. doi:10.1016/j.talanta.2012.12.003.
      Zhu M, Long Y, Ma Y, et al. Comparison of chemical and fatty acid composition of green coffee bean (Coffea arabica L.) from different geographical origins. LWT. 2021;140:110802. doi:10.1016/j.lwt.2020.110802.
      Martuscelli M, Esposito L, Di Mattia CD, Ricci A, Mastrocola D. Characterization of coffee silver skin as potential food‐safe ingredient. Foods. 2021;10(6):1367. doi:10.3390/foods10061367.
      Costa AS, Alves RC, Vinha AF, et al. Optimization of antioxidants extraction from coffee silverskin, a roasting by‐product, having in view a sustainable process. Ind Crop Prod. 2014;53:350‐357. doi:10.1016/j.indcrop.2014.01.006.
      Bessada SM, Alves RC, Oliveira MBPP. Coffee silverskin: a review on potential cosmetic applications. Cosmetics. 2018;5(1):5. doi:10.3390/cosmetics5010005.
      Ballesteros LF, Teixeira JA, Mussatto SI. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioproc Tech. 2014;7(12):3493‐3503. doi:10.1007/s11947‐014‐1349‐z.
      Guglielmetti A, D'ignoti V, Ghirardello D, Belviso S, Zeppa G. Optimisation of ultrasound and microwave‐assisted extraction of caffeoylquinic acids and caffeine from coffee silverskin using response surface methodology. Ital J Food Sci. 2017;29(3). doi:10.14674/IJFS‐727.
      Bresciani L, Calani L, Bruni R, Brighenti F, Del Rio D. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res Int. 2014;61:196‐201. doi:10.1016/j.foodres.2013.10.047.
      Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother. 2018;97:67‐74. doi:10.1016/j.biopha.2017.10.064.
      Heckman MA, Weil J, De Mejia EG. Caffeine (1, 3, 7‐trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75(3):R77‐R87. doi:10.1111/j.1750‐3841.2010.01561.x.
      dePaula J, Farah A. Caffeine consumption through coffee: content in the beverage, metabolism, health benefits and risks. Beverages. 2019;5(2):37doi:10.3390/beverages5020037.
      Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci CMLS. 2004;61(7):857‐872. doi:10.1007/s00018‐003‐3269‐3.
      Rossi S, De Chiara V, Musella A, et al. Effects of caffeine on striatal neurotransmission: focus on cannabinoid CB1 receptors. Mol Nutr Food Res. 2010;54(4):525‐531. doi:10.1002/mnfr.200900237.
      Liu R, Guo X, Park Y, et al. Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am J Epidemiol. 2012;175(11):1200‐1207. doi:10.1093/aje/kwr451.
      Vieira AJ, Gaspar EM, Santos PM. Mechanisms of potential antioxidant activity of caffeine. Radiat Phys Chem. 2020;174:108968. doi:10.1016/j.radphyschem.2020.108968.
      Motegi T, Katayama M, Uzuka Y, Okamura Y. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines. Res Vet Sci. 2013;95(2):600‐605. doi:10.1016/j.rvsc.2013.06.011.
      Napolitano A, Fogliano V, Tafuri A, Ritieni A. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J Agric Food Chem. 2007;55(25):10499‐10504. doi:10.1021/jf071959.
      Barbosa‐Pereira L, Guglielmetti A, Zeppa G. Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioproc Tech. 2018;11(4):818‐835. doi:10.1007/s11947‐017‐2045‐6.
      Mussatto SI, Machado E, Martins S, Teixeira JA. Production, composition, and application of coffee and its industrial residues. Food Bioproc Tech. 2011;4(5):661‐672. doi:10.1007/s11947‐011‐0565‐z.
      Martinez‐Saez N, Ullate M, Martin‐Cabrejas MA, et al. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem. 2014;150:227‐234. doi:10.1016/j.foodchem.2013.10.100.
      Ribeiro VS, Leitão AE, Ramalho JC, Lidon FC. Chemical characterization and antioxidant properties of a new coffee blend with cocoa, coffee silverskin and green coffee minimally processed. Food Res Int. 2014;61:39‐47. doi:10.1016/j.foodres.2014.05.003.
      Gocmen D, Sahan Y, Yildiz E, Coskun M, Aroufai İA. Use of coffee silverskin to improve the functional properties of cookies. J Food Sci Technol. 2019;56(6):2979‐2988. doi:10.1007/s13197‐019‐03773‐y.
      Bertolino M, Barbosa‐Pereira L, Ghirardello D, et al. Coffee silverskin as nutraceutical ingredient in yogurt: its effect on functional properties and its bioaccessibility. J Sci Food Agric. 2019;99(9):4267‐4275. doi:10.1002/jsfa.9659.
      Martuscelli M, Esposito L, Mastrocola D. The role of coffee silver skin against oxidative phenomena in newly formulated chicken meat burgers after cooking. Foods. 2021;10(8):1833. doi:10.3390/foods10081833.
      Rodrigues F, Gaspar C, Palmeira‐de‐Oliveira A, Sarmento B, Helena Amaral M, Oliveira MBPP. Application of coffee silverskin in cosmetic formulations: physical/antioxidant stability studies and cytotoxicity effects. Drug Dev Ind Pharm. 2016;42(1):99‐106. doi:10.3109/03639045.2015.1035279.
      Kusumocahyo SP, Tangguh P, Annelies CD, Sutanto H. Utilization of coffee Silverskin by‐product from coffee roasting industry through extraction process for the development of antioxidant skin gel. J Cosmet Sci. 2019;70(6):313‐325.
      da Rosa JR, Nunes GL, Motta MH, et al. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2019;89:742‐748. doi:10.1016/j.foodhyd.2018.11.042.
      Pashazadeh H, Zannou O, Ghellam M, Koca I, Galanakis CM, Aldawoud T. Optimization and encapsulation of phenolic compounds extracted from maize waste by freeze‐drying, spray‐drying, and microwave‐drying using maltodextrin. Foods. 2021;10(6):1396. doi:10.3390/foods10061396.
      Najaf Najafi M, Kadkhodaee R, Mortazavi SA. Effect of drying process and wall material on the properties of encapsulated cardamom oil. Food Biophys. 2011;6(1):68‐76. doi:10.1007/s11483‐010‐9176‐x.
      Waterhouse GI, Sun‐Waterhouse D, Su G, Zhao H, Zhao M. Spray‐drying of antioxidant‐rich blueberry waste extracts; interplay between waste pretreatments and spray‐drying process. Food Bioproc Tech. 2017;10(6):1074‐1092. doi:10.1007/s11947‐017‐1880‐9.
      Şahin‐Nadeem H, Torun M, Özdemir F. Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. LWT ‐ Food Sci Technol. 2011;44(7):1626‐1635. doi:10.1016/j.lwt.2011.02.009.
      Ricaurte L, Correa REP, de Jesus Perea‐Flores M, Quintanilla‐Carvajal MX. Influence of milk whey on high‐oleic palm oil nanoemulsions: powder production, physical and release properties. Food Biophys. 2017;12(4):439‐450. doi:10.1007/s11483‐017‐9500‐9.
      de Araujo Santiago MCP, Nogueira RI, Paim DRSF, et al. Effects of encapsulating agents on anthocyanin retention in pomegranate powder obtained by the spray drying process. LWT. 2016;73:551‐556. doi:10.1016/j.lwt.2016.06.059.
      Bednarska MA, Janiszewska‐Turak E. The influence of spray drying parameters and carrier material on the physico‐chemical properties and quality of chokeberry juice powder. J Food Technol Res. 2020;57(2):564‐577. doi:10.1007/s13197‐019‐04088‐8.
      Kanakdande D, Bhosale R, Singhal RS. Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydr Polym. 2007;67(4):536‐541. doi:10.1016/j.carbpol.2006.06.023.
      Tontul I, Topuz A. Spray‐drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. Trends Food Sci Technol. 2017;63:91‐102. doi:10.1016/j.tifs.2017.03.009.
      Goula AM, Adamopoulos KG. Spray drying of tomato pulp: effect of feed concentration. Drying Technol. 2004;22(10):2309‐2330. doi:10.1081/DRT‐200040007.
      Igual M, Ramires S, Mosquera L, Martínez‐Navarrete N. Optimization of spray drying conditions for lulo (Solanum quitoense L.) pulp. Powder Technol. 2014;256:233‐238. doi:10.1016/j.powtec.2014.02.003.
      Vimercati WC, Araújo CDS, Macedo LL, Correa JLG, Pimenta CJ. Encapsulation of coffee silverskin extracts by foam mat drying and comparison with powders obtained by spray drying and freeze‐drying. J Food Sci. 2022;87(4):1767‐1779. doi:10.1111/1750‐3841.16102.
      Ballesteros LF, Teixeira JA, Mussatto SI. Selection of the solvent and extraction conditions for maximum recovery of antioxidant phenolic compounds from coffee silverskin. Food Bioproc Tech. 2014;7(5):1322‐1332. doi:10.1007/s11947‐013‐1115‐7.
      Wang H, Provan GJ, Helliwell K. Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci Technol. 2000;11(4‐5):152‐160. doi:10.1016/S0924‐2244(00)00061‐3.
      Koc B, Isleroglu H, Turker I. Sorption behavior and storage stability of microencapsulated transglutaminase by ultrasonic spray‐freeze‐drying. Drying Technol. 2022;40(2):337‐351. doi:10.1080/07373937.2020.1793771.
      Koç M, Güngör Ö, Zungur A, et al. Microencapsulation of extra virgin olive oil by spray drying: effect of wall materials composition, process conditions, and emulsification method. Food Bioproc Tech. 2015;8(2):301‐318. doi:10.1007/s11947‐014‐1404‐9.
      Şahin‐Nadeem H, Dinçer C, Torun M, Topuz A, Özdemir F. Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying. LWT ‐ Food Sci Technol. 2013;52(1):31‐38. doi:10.1016/j.lwt.2013.01.007.
      Balci‐Torun F, Ozdemir F. Encapsulation of strawberry flavour and physicochemical characterization of the encapsulated powders. Powder Technol. 2021;380:602‐612. doi:10.1016/j.powtec.2020.11.060.
      Pellicer JA, Fortea MI, Trabal J, Rodríguez‐López MI, Gabaldón JA, Núñez‐Delicado E. Stability of microencapsulated strawberry flavour by spray drying, freeze drying and fluid bed. Powder Technol. 2019;347:179‐185. doi:10.1016/j.powtec.2019.03.010.
      Shan OE, Zzaman W, Yang TA. Impact of different temperature‐time profiles during superheated steam roasting on some physical changes of Robusta coffee. Pertanika J Trop Agric Sci. 2016;39(3):311‐320.
      Li Y, Tang B, Chen J, Lai P. Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Sci Technol. 2017;38(3):530‐536. doi:10.1590/1678‐457x.09817.
      Masters K. Spray drying handbook. 5thed. New York: Wiley; 1991.
      Samborska K, Gajek P, Kaminska‐Dworznicka A. Spray drying of honey: the effect of drying agents on powder properties. Polish J Food Nutr Sci. 201510.2478/pjfns‐2013‐0012;65(2):109‐118.
      Vignoli JA, Viegas MC, Bassoli DG, de Toledo Benassi M. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res Int. 2014;61:279‐285. doi:10.1016/j.foodres.2013.06.006.
      Costa AS, Alves RC, Vinha AF, et al. Nutritional, chemical and antioxidant/pro‐oxidant profiles of silverskin, a coffee roasting by‐product. Food Chem. 2018;267:28‐35. doi:10.1016/j.foodchem.2017.03.106.
      Toschi TG, Cardenia V, Bonaga G, Mandrioli M, Rodriguez‐Estrada MT. Coffee silverskin: characterization, possible uses, and safety aspects. J Agric Food Chem. 2014;62(44):10836‐10844. doi:10.1021/jf503200z.
      Koç B, Koç M, Baysan U. Food powders bulk properties, food powders properties and characterization. Springer; 2021:1‐36. doi:10.1007/978‐3‐030‐48908‐3_1.
      Carr RL Jr. Evaluating flow properties of solids. Chem Eng(Jan). 1965;18:163‐168.
      Sarabandi K, Jafari SM, Mahoonak AS, Mohammadi A. Application of gum arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int J Biol Macromol. 2019;140:59‐68. doi:10.1016/j.ijbiomac.2019.08.133.
      Nguyen DQ, Nguyen TH, Mounir S, Allaf K. Effect of feed concentration and inlet air temperature on the properties of soymilk powder obtained by spray drying. Drying Technol. 2018;36(7):817‐829. doi:10.1080/07373937.2017.1357040.
      Arepally D, Goswami TK. Effect of inlet air temperature and gum arabic concentration on encapsulation of probiotics by spray drying. Lwt. 2019;99:583‐593. doi:10.1016/j.lwt.2018.10.022.
      Premi M, Sharma H. Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. Int J Biol Macromol. 2017;105(Pt 1):1232‐1240. doi:10.1016/j.ijbiomac.2017.07.160.
      Adsare SR, Annapure US. Microencapsulation of curcumin using coconut milk whey and gum Arabic. J Food Eng. 2021;298:110502doi:10.1016/j.jfoodeng.2021.110502.
      Moreira GEG, Costa MGM, de Souza ACR, de Brito ES, de Medeiros MD, de Azeredo HM. Physical properties of spray dried acerola pomace extract as affected by temperature and drying aids. LWT ‐ Food Sci Technol. 2009;42(2):641‐645. doi:10.1016/j.lwt.2008.07.008.
      Corrêa‐Filho LC, Lourenço MM, Moldão‐Martins M, Alves VD. Microencapsulation of β‐carotene by spray drying: effect of wall material concentration and drying inlet temperature. Int J Food Sci. 2019;2019:1‐12. doi:10.1155/2019/8914852.
      Abrahão FR, Rocha LCR, Santos TA, et al. Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT. 2019;103:116‐124. doi:10.1016/j.lwt.2018.12.061.
      Chung H‐S, Kim D‐H, Youn K‐S, Lee J‐B, Moon K‐D. Optimization of roasting conditions according to antioxidant activity and sensory quality of coffee brews. Food Sci Biotechnol. 2013;22(1):23‐29. doi:10.1007/s10068‐013‐0004‐1.
      Fazaeli M, Emam‐Djomeh Z, Kalbasi‐Ashtari A, Omid M. Effect of process conditions and carrier concentration for improving drying yield and other quality attributes of spray dried black mulberry (Morus nigra) juice. Int J Food Eng. 2012;8(1):1‐20. doi:10.1515/1556‐3758.2023.
    • Contributed Indexing:
      Keywords: bioactive compounds; caffeine; coffee silver skin powder; encapsulation; spray drying
    • Accession Number:
      318ADP12RI (Chlorogenic Acid)
      3G6A5W338E (Caffeine)
      0 (Coffee)
      0 (Waste Products)
      0 (Powders)
    • Publication Date:
      Date Created: 20230125 Date Completed: 20241203 Latest Revision: 20241203
    • Publication Date:
      20241204
    • Accession Number:
      10.1002/pca.3207
    • Accession Number:
      36694947