Impact of Obesity on Ventriculo-Arterial Interaction in Patients After Coarctation of Aorta repair.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: United States NLM ID: 8003849 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1971 (Electronic) Linking ISSN: 01720643 NLM ISO Abbreviation: Pediatr Cardiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Springer Verlag
      Original Publication: [New York, Springer-Verlag]
    • Subject Terms:
    • Abstract:
      Survival of patients after repair of coarctation of Aorta (CoA) has improved significantly over the decades, but patients have decreased life expectancy as compared to the general population. This has been attributed to increased hypertension, cerebrovascular disease, and coronary artery disease. There has also been an increasing concern of overweight and obesity in patients with adult congenital heart disease. While there have been studies looking at the impact of long-term hypertension on myocardial performance and outcomes in this population, this study aims to assess the impact of obesity in these patients on their myocardial performance. Ventriculo-arterial coupling is used as a measure of myocardial performance which reflects the interaction between cardiac contractility and arterial elastance. Patients after CoA repair are known to have hypertension affecting the arterial elastance. Obesity affects cardiac contractility as well. This study demonstrated that in a group of young patients after CoA repair, body mass index (BMI) has a relationship with left ventricular (LV) contractility and myocardial performance. This relationship was independent of blood pressure. BMI itself was not seen to affect the determinants of diastolic function in this study, suggesting that LV contractility may be affected before one can notice a change in the diastolic function secondary to BMI.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, Lupo PJ, Riehle-Colarusso T, Cho SJ, Aggarwal D, Kirby RS, National Birth Defects Prevention Network (2019) National population-based estimates for major birth defects, 2010–2014. Birth Defects Res 111(18):1420–1435. https://doi.org/10.1002/bdr2.1589 . (PMID: 31580536; PMCID: PMC7203968). (PMID: 10.1002/bdr2.1589315805367203968)
      Campbell M (1970) Natural history of coarctation of the aorta. Br Heart J 32(5):633–640. https://doi.org/10.1136/hrt.32.5.633 . (PMID: 5470045; PMCID: PMC487385). (PMID: 10.1136/hrt.32.5.6335470045487385)
      Lee MGY, Babu-Narayan SV, Kempny A, Uebing A, Montanaro C, Shore DF, d’Udekem Y, Gatzoulis MA (2019) Long-term mortality and cardiovascular burden for adult survivors of coarctation of the aorta. Heart 105(15):1190–1196. https://doi.org/10.1136/heartjnl-2018-314257 . (PMID: 30923175). (PMID: 10.1136/heartjnl-2018-31425730923175)
      Pickard SS, Gauvreau K, Gurvitz M, Gagne JJ, Opotowsky AR, Jenkins KJ, Prakash A (2018) Stroke in adults with coarctation of the aorta: a national population-based study. J Am Heart Assoc 7(11):e009072. https://doi.org/10.1161/JAHA.118.009072 . (PMID: 29858370; PMCID: PMC6015389). (PMID: 10.1161/JAHA.118.009072298583706015389)
      Pickard SS, Gauvreau K, Gurvitz M, Gagne JJ, Opotowsky AR, Jenkins KJ, Prakash AA (2018) National population-based study of adults with coronary artery disease and coarctation of the aorta. Am J Cardiol 122(12):2120–2124. https://doi.org/10.1016/j.amjcard.2018.08.051 . (PMID: 30318418; PMCID: PMC6260783). (PMID: 10.1016/j.amjcard.2018.08.051303184186260783)
      Willinger L, Brudy L, Meyer M, Oberhoffer-Fritz R, Ewert P, Müller J (2021) Overweight and obesity in patients with congenital heart disease: a systematic review. Int J Environ Res Public Health 18(18):9931. https://doi.org/10.3390/ijerph18189931 . (PMID: 34574853; PMCID: PMC8466650). (PMID: 10.3390/ijerph18189931345748538466650)
      Jackson JL, Fox KR, Cotto J, Harrison TM, Tran AH, Keim SA (2020) Obesity across the lifespan in congenital heart disease survivors: prevalence and correlates. Heart Lung 49(6):788–794. https://doi.org/10.1016/j.hrtlng.2020.08.020 . (PMID: 32980629). (PMID: 10.1016/j.hrtlng.2020.08.02032980629)
      Chirinos JA, Rietzschel ER, De Buyzere ML, De Bacquer D, Gillebert TC, Gupta AK, Segers P, Asklepios investigators (2009) Arterial load and ventricular-arterial coupling: physiologic relations with body size and effect of obesity. Hypertension 54(3):558–566. https://doi.org/10.1161/HYPERTENSIONAHA.109.131870 . (PMID: 19581507; PMCID: PMC2780003). (PMID: 10.1161/HYPERTENSIONAHA.109.13187019581507)
      Kulkarni A, Gulesserian T, Lorenzo JMMD, Haroonian Y, Ngyuyen M, Lo Y, Wang D, Hsu D, Kaskel F, Mahgerefteh J (2018) Left ventricular remodelling and vascular adaptive changes in adolescents with obesity. Pediatr Obes 13(9):541–549. https://doi.org/10.1111/ijpo.12278 . (PMID: 29569422). (PMID: 10.1111/ijpo.1227829569422)
      Egbe AC, Miranda WR, Connolly HM, Borlaug BA (2021) Coarctation of aorta is associated with left ventricular stiffness, left atrial dysfunction and pulmonary hypertension. Am Heart J 241:50–58. https://doi.org/10.1016/j.ahj.2021.07.005 . (PMID: 34289342; PMCID: PMC8490309). (PMID: 10.1016/j.ahj.2021.07.005342893428490309)
      Monge García MI, Santos A (2020) Understanding ventriculo-arterial coupling. Ann Transl Med 8(12):795. https://doi.org/10.21037/atm.2020.04.10 . (PMID: 32647720; PMCID: PMC7333110). (PMID: 10.21037/atm.2020.04.10326477207333110)
      Milano EG, Neumann S, Sophocleous F, Pontecorboli G, Curtis SL, Bedair R, Caputo M, Luciani GB, Bucciarelli-Ducci C, Biglino G (2022) Wave reflection and ventriculo-arterial coupling in bicuspid aortic valve patients with repaired aortic coarctation. Front Pediatr 9:770754. https://doi.org/10.3389/fped.2021.770754 . (PMID: 35155312; PMCID: PMC8832057). (PMID: 10.3389/fped.2021.770754351553128832057)
      Capone CA, Lamour JM, Lorenzo J, Tria B, Ye K, Hsu DT, Mahgerefteh J (2019) Ventricular arterial coupling: a novel echocardiographic risk factor for disease progression in pediatric dilated cardiomyopathy. Pediatr Cardiol 40(2):330–338. https://doi.org/10.1007/s00246-018-2021-6 . (PMID: 30415380). (PMID: 10.1007/s00246-018-2021-630415380)
      Yoon JH, Kim MH, Chung H, Choi EY, Min PK, Yoon YW, Lee BK, Hong BK, Rim SJ, Kwon HM, Kim JY (2016) Echo-doppler-derived indexes of ventricular stiffness and ventriculo-arterial interaction as predictors of new-onset atrial fibrillation in patients with heart failure. Cardiovasc Ultrasound 4(14):7. https://doi.org/10.1186/s12947-016-0050-y . (PMID: 26846527; PMCID: PMC4743395). (PMID: 10.1186/s12947-016-0050-y)
      Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, Lai WW, Geva T (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the pediatric measurements writing group of the American society of echocardiography pediatric and congenital heart disease council. J Am Soc Echocardiogr 23(5):465–495. https://doi.org/10.1016/j.echo.2010.03.019 . (PMID: 20451803). (PMID: 10.1016/j.echo.2010.03.01920451803)
      Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, Horton K, Ogunyankin KO, Palma RA, Velazquez EJ (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American society of echocardiography. J Am Soc Echocardiogr 32(1):1–64. https://doi.org/10.1016/j.echo.2018.06.004 . (PMID: 30282592). (PMID: 10.1016/j.echo.2018.06.00430282592)
      Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbély A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the European society of cardiology. Eur Heart J 28(20):2539–2550. https://doi.org/10.1093/eurheartj/ehm037 . (PMID: 17428822). (PMID: 10.1093/eurheartj/ehm03717428822)
      Davis EF, Crousillat DR, He W, Andrews CT, Hung JW, Danik JS (2022) Indexing left atrial volumes: alternative indexing methods better predict outcomes in overweight and obese populations. JACC Cardiovasc Imaging 15(6):989–997. https://doi.org/10.1016/j.jcmg.2022.02.006 . (PMID: 35680231). (PMID: 10.1016/j.jcmg.2022.02.00635680231)
      Mahgerefteh J, Lai W, Colan S, Trachtenberg F, Gongwer R, Stylianou M, Bhat AH, Goldberg D, McCrindle B, Frommelt P, Sachdeva R, Shuplock JM, Spurney C, Troung D, Cnota JF, Camarda JA, Levine J, Pignatelli R, Altmann K, van der Velde M, Thankavel PP, Chowdhury S, Srivastava S, Johnson TR, Lopez L, Pediatric Heart Network Investigators (2021) Height versus body surface area to normalize cardiovascular measurements in children using the pediatric heart network echocardiographic Z-score database. Pediatr Cardiol 42(6):1284–1292. https://doi.org/10.1007/s00246-021-02609-x . (PMID: 33877418; PMCID: PMC8684290). (PMID: 10.1007/s00246-021-02609-x338774188684290)
      Chowdhury SM, Butts RJ, Taylor CL, Bandisode VM, Chessa KS, Hlavacek AM, Shirali GS, Baker GH (2016) Validation of noninvasive measures of left ventricular mechanics in children: a simultaneous echocardiographic and conductance catheterization study. J Am Soc Echocardiogr 29(7):640–647. https://doi.org/10.1016/j.echo.2016.02.016 . (PMID: 27025669; PMCID: PMC4930890). (PMID: 10.1016/j.echo.2016.02.016270256694930890)
      Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T (2001) Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates. Circulation 103(17):2176–2180. https://doi.org/10.1161/01.cir.103.17.2176 . (PMID: 11331259). (PMID: 10.1161/01.cir.103.17.217611331259)
      Martins JD, Zachariah J, Selamet Tierney ES, Truong U, Morris SA, Kutty S, de Ferranti SD, Guarino M, Thomas B, Oliveira D, Marinho A, António M, Gauvreau K, Jalles N, Geva T, Carmo MM, Prakash A, LOVE‐COARCT Study (2019) Impact of treatment modality on vascular function in coarctation of the aorta: the LOVE-COARCT study. J Am Heart Assoc 8(7):e011536. https://doi.org/10.1161/JAHA.118.011536 . (PMID: 30929556; PMCID: PMC6509735). (PMID: 10.1161/JAHA.118.011536309295566509735)
      Packer M (2018) Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol 71(20):2360–2372. https://doi.org/10.1016/j.jacc.2018.03.509 . (PMID: 29773163). (PMID: 10.1016/j.jacc.2018.03.50929773163)
      Yogeswaran V, Connolly HM, Al-Otaibi M, Ammash NM, Warnes CA, Said SM, Egbe AC (2018) Prognostic role of hypertensive response to exercise in patients with repaired coarctation of aorta. Can J Cardiol 34(5):676–682. https://doi.org/10.1016/j.cjca.2018.02.004 . (PMID: 29731027). (PMID: 10.1016/j.cjca.2018.02.00429731027)
      Swan L, Hillis WS (2000) Exercise prescription in adults with congenital heart disease: a long way to go. Heart 83(6):685–687. https://doi.org/10.1136/heart.83.6.685 . (PMID: 10814630; PMCID: PMC1760864). (PMID: 10.1136/heart.83.6.685108146301760864)
    • Publication Date:
      Date Created: 20230123 Date Completed: 20240716 Latest Revision: 20240716
    • Publication Date:
      20240716
    • Accession Number:
      10.1007/s00246-023-03104-1
    • Accession Number:
      36690764