A high-throughput KASP assay provides insights into the evolution of multiple resistant mutations in populations of the two-spotted spider mite Tetranychus urticae across China.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Published for SCI by Wiley Country of Publication: England NLM ID: 100898744 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1526-4998 (Electronic) Linking ISSN: 1526498X NLM ISO Abbreviation: Pest Manag Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
    • Subject Terms:
    • Abstract:
      Background: The two-spotted spider mite (TSSM), Tetranychus urticae (Acari: Tetranychidae), is a cosmopolitan phytophagous pest in agriculture and horticulture. It has developed resistance to many acaricides by target-site mutations. Understanding the status and evolution of resistant mutations in the field is essential for resistance management. Here, we applied a high-throughput Kompetitive allele-specific polymerase chain reaction (KASP) method for detecting six mutations conferring resistance to four acaricides of the TSSM. We genotyped 3274 female adults of TSSM from 43 populations collected across China in 2017, 2020, and 2021.
      Results: The KASP genotyping of 24 testing individuals showed 99% agreement with Sanger sequencing results. KASP assays showed that most populations had a high frequency of mutations conferring avermectin (G314D and G326E) and pyridaben (H92R) resistance. The frequency of mutation conferring bifenazate (A269V and G126S) and etoxazole (I1017F) resistance was relatively low. Multiple mutations were common in the TSSM, with 70.2% and 24.6% of individuals having 2-6 and 7-10 of 10 possible resistant alleles, respectively. No loci were linked in most populations among the six mutations, indicating the development of multiple resistance is mainly by independent selection. However, G314D and I1017F on the nuclear genome deviated from Hardy-Weinberg equilibrium in most populations, indicating significant selective pressure on TSSM populations by acaricides or fitness cost of the mutations in the absence of acaricide selection.
      Conclusion: Our study revealed that the high frequency of TSSMs evolved multiple resistant mutations in population and individual levels by independent selection across China, alarming for managing multiple-acaricides resistance. © 2023 Society of Chemical Industry.
      (© 2023 Society of Chemical Industry.)
    • References:
      Gerson U and Weintraub PG, Mites (Acari) as a factor in greenhouse management. Annu Rev Entomol 57:229-247 (2012).
      Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbic M et al., A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc Natl Acad Sci USA 110:E113-E122 (2013).
      Gong YJ, Chen JC, Zhu L, Cao LJ, Jin GH, Hoffmann AA et al., Preference and performance of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) on strawberry cultivars. Exp Appl Acarol 76:185-196 (2018).
      Tanaka M, Yase J, Aoki S, Sakurai T, Kanto T and Osakabe M, Physical control of spider mites using ultraviolet-B with light reflection sheets in greenhouse strawberries. J Econ Entomol 109:1758-1765 (2016).
      Gigon V, Camps C and Le Corff J, Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses. Exp Appl Acarol 68:55-70 (2016).
      Gong YJ, Cao LJ, Wang ZH, Zhou XY, Chen JC, Hoffmann AA et al., Efficacy of carbon dioxide treatments for the control of the two-spotted spider mite, Tetranychus urticae, and treatment impact on plant seedlings. Exp Appl Acarol 75:143-153 (2018).
      Hata FT, Ventura MU, Carvalho MG, Miguel AL, Souza MS, Paula MT et al., Intercropping garlic plants reduces Tetranychus urticae in strawberry crop. Exp Appl Acarol 69:311-321 (2016).
      Maeoka A and Osakabe M, Co-occurrence of subunit B and C mutations in respiratory complex II confers high resistance levels to pyflubumide and cyenopyrafen in the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Pest Manag Sci 77:5149-5157 (2021).
      Sugimoto N, Takahashi A, Ihara R, Itoh Y, Jouraku A, Leeuwen TV et al., QTL mapping using microsatellite linkage reveals target-site mutations associated with high levels of resistance against three mitochondrial complex II inhibitors in Tetranychus urticae. Insect Biochem Molec 123:103410 (2020).
      Fotoukkiaii SM, Tan Z, Xue W, Wybouw N and Leeuwen TV, Identification and characterization of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in the spider mite Tetranychus urticae. Pest Manag Sci 76:1154-1163 (2020).
      Papapostolou KM, Riga M, Charamis J, Skoufa E, Souchlas V, Ilias A et al., Identification and characterization of striking multiple-insecticide resistance in a Tetranychus urticae field population from Greece. Pest Manag Sci 77:666-676 (2021).
      Xu DD, He YY, Zhang YJ, Xie W, Wu QJ and Wang SL, Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae, in China. Pestic Biochem Physiol 150:89-96 (2018).
      Sun JY, Li CJ, Jiang JQ, Song CG, Wang C, Feng KY et al., Cross resistance, inheritance and fitness advantage of cyetpyrafen resistance in two-spotted spider mite Tetranychus urticae. Pestic Biochem Physiol 183:105062 (2022).
      Njiru C, Saalwaechter C, Gutbrod O, Geibel S, Wybouw N and Van Leeuwen T, A H258Y mutation in subunit B of the succinate dehydrogenase complex of the spider mite Tetranychus urticae confers resistance to cyenopyrafen and pyflubumide, but likely reinforces cyflumetofen binding and toxicity. Insect Biochem Mol Biol 144:103761 (2022).
      Mavridis K, Papapostolou KM, Riga M, Ilias A, Michaelidou K, Bass C et al., Multiple TaqMan qPCR and droplet digital PCR (ddPCR) diagnostics for pesticide resistance monitoring and management, in the major agricultural pest Tetranychus urticae. Pest Manag Sci 78:263-273 (2021).
      Zhang Y, Xu D, Zhang Y, Wu Q, Xie W, Guo Z et al., Frequencies and mechanisms of pesticide resistance in Tetranychus urticae field populations in China. Insect Sci 29:827-839 (2022).
      Sparks TC and Nauen R, IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122-128 (2015).
      Adesanya AW, Lavine MD, Moural TW, Lavine LC, Zhu F and Walsh DB, Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J Pest Sci 94:639-663 (2021).
      Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W and Tirry L, Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Molec 40:563-572 (2010).
      Kim YJ, Park HM, Cho JR and Ahn YJ, Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 99:954-958 (2006).
      Shi P, Cao LJ, Gong YJ, Ma L, Song W, Chen JC et al., Independently evolved and gene flow-accelerated pesticide resistance in two-spotted spider mites. Ecol Evol 9:2206-2219 (2019).
      Wei P, Demaeght P, De Schutter K, Grigoraki L, Labropoulou V, Riga M et al., Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCE04) of Tetranychus urticae is associated with high levels of resistance to the keto-enol acaricide spirodiclofen. Pest Manag Sci 76:1142-1153 (2020).
      Pavlidi N, Khalighi M, Myridakis A, Dermauw W, Wybouw N, Tsakireli D et al., A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochem Molec 80:101-115 (2017).
      Piraneo TG, Bull J, Morales MA, Lavine LC, Walsh DB and Zhu F, Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields. Sci Rep 5:17090 (2015).
      Lee SH, Kim YH, Kwon DH, Cha DJ and Kim JH, Mutation and duplication of arthropod acetylcholinesterase: implications for pesticide resistance and tolerance. Pestic Biochem Physiol 120:118-124 (2015).
      Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L et al., Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105:5980-5985 (2008).
      Van Leeuwen T, Van Nieuwenhuyse P, Vanholme B, Dermauw W, Nauen R and Tirry L, Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri. Insect Mol Biol 20:135-140 (2011).
      Van Leeuwen T, Demaeght P, Osborne EJ, Dermauw W, Gohlke S, Nauen R et al., Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc Natl Acad Sci USA 109:4407-4412 (2012).
      Bajda S, Dermauw W, Panteleri R, Sugimoto N, Douris V, Tirry L et al., A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem Molec 80:79-90 (2017).
      Maeoka A, Yuan L, Itoh Y, Saito C, Doi M, Imamura T et al., Diagnostic prediction of acaricide resistance gene frequency using quantitative real-time PCR with resistance allele-specific primers in the two-spotted spider mite Tetranychus urticae population (Acari: Tetranychidae). Appl Entomol Zool 55:329-335 (2020).
      Van Leeuwen T, Dermauw W, Mavridis K and Vontas J, Significance and interpretation of molecular diagnostics for insecticide resistance management of agricultural pests. Curr Opin Insect Sci 39:69-76 (2020).
      Riga M, Bajda S, Themistokleous C, Papadaki S, Palzewicz M, Dermauw W et al., The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Sci Rep 7:9202 (2017).
      Network RP, Trends and challenges in pesticide resistance detection. Trends Plant Sci 21:834-853 (2016).
      Alpkent YN, nak E, Ulusoy S and Ay R, Acaricide resistance and mechanisms in Tetranychus urticae populations from greenhouses in Turkey. Syst Appl Acarol 25:155-168 (2020).
      Simma EA, Hailu B, Jonckheere W, Rogiers C, Duchateau L, Dermauw W et al., Acaricide resistance status and identification of resistance mutations in populations of the two-spotted spider mite Tetranychus urticae from Ethiopia. Exp Appl Acarol 82:475-491 (2020).
      Semagn K, Babu R, Hearne S and Olsen M, Single nucleotide polymorphism genotyping using Kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breeding 33:1-14 (2013).
      Tan CT, Yu HJ, Yang Y, Xu XY, Chen MS, Rudd JC et al., Development and validation of KASP markers for the greenbug resistance gene Gb7 and the hessian fly resistance gene H32 in wheat. Theor Appl Genet 130:1867-1884 (2017).
      Wosula EN, Chen W, Amour M, Fei Z and Legg JP, KASP genotyping as a molecular tool for fiagnosis of cassava colonizing Bemisia tabaci. Insects 11:305 (2020).
      Sun LN, Shen XJ, Cao LJ, Chen JC, Ma LJ, Wu SA et al., Increasing frequency of G275E mutation in the nicotinic acetylcholine receptor α6 subunit conferring spinetoram resistance in invading populations of western flower thrips in China. Insects 13:331 (2022).
      Shen XJ, Cao LJ, Chen JC, Ma LJ, Wang JX, Hoffmann AA et al., A comprehensive assessment of insecticide resistance mutations in source and immigrant populations of the diamondback moth Plutella xylostella (L.). Pest Manag Sci (2022). https://doi.org/10.1002/ps.7223.
      Hawkins NJ, Bass C, Dixon A and Neve P, The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 94:135-155 (2018).
      Daborn PJ and Le Goff G, The genetics and genomics of insecticide resistance. Trends Genet 20:163-170 (2004).
      Baucom RS, Iriart V, Kreiner JM and Yakimowski S, Resistance evolution, from genetic mechanism to ecological context. Mol Ecol 30:5299-5302 (2021).
      Taylor CE, Quaglia F and Georghiou GP, Evolution of resistance to insecticides: a cage study on the influence of migration and insecticide decay rates. J Econ Entomol 76:704-707 (1983).
      Pasteur N and Raymon M, Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations. J Hered 87:444-449 (1996).
      Denholm I, Devine GJ and Williamson MS, Insecticide resistance on the move. Science 297:2222-2223 (2002).
      Guillem-Amat A, Ureña E, López-Errasquín E, Navarro-Llopis V, Batterham P, Sánchez L et al., Functional characterization and fitness cost of spinosad-resistant alleles in Ceratitis capitata. J Pest Sci 93:1043-1058 (2020).
      Tehri K, A review on reproductive strategies in two spotted spider mite, Tetranychus Urticae Koch 1836 (Acari: Tetranychidae). J Entomol Zool Stud 2:35-39 (2014).
      Mardulyn P, Goffredo M, Conte A, Hendrickx G, Meiswinkel R, Balenghien T et al., Climate change and the spread of vector-borne diseases: using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy. Mol Ecol 22:2456-2466 (2013).
      Kwon DH, Yoon KS, Clark JM and Lee SH, A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite Tetranychus urticae Koch. Insect Mol Biol 19:583-591 (2010).
      Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbic M, Tirry L et al., The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochem Molec 42:455-465 (2012).
      Saenz-de-Cabezon Irigaray FJ and Zalom FG, Transovarial biotransference of etoxazole through a terrestrial trophic web. Pest Manag Sci 68:1467-1470 (2012).
      Demaeght P, Osborne EJ, Odman-Naresh J, Grbic M, Nauen R, Merzendorfer H et al., High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae. Insect Biochem Molec 51:52-61 (2014).
      Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V et al., The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487-492 (2011).
      Shi P, Guo SK, Gao YF, Chen JC, Gong YJ, Tang MQ et al., Association between susceptibility of Thrips palmi to spinetoram and frequency of G275E mutation provides basis for molecular quantification of field-evolved resistance. J Econ Entomol 114:339-347 (2021).
      Jombart T, Devillard S, Dufour AB and Pontier D, Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92-103 (2008).
      Jombart T, Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403-1405 (2008).
      Warnes G, Gorjanc G, Leisch F and Man M. Genetics: population genetics. R package version 1.3. 8.2. The Comprehensive R Archive Network. (2019).
      Baltzegar J, Vella M, Gunning C, Vasquez G, Astete H, Stell F et al., Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in Aedes aegypti. Evol Appl 14:2098-2113 (2021).
      Ilias A, Vontas J and Tsagkarakou A, Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect Biochem Molec 48:17-28 (2014).
      Mavridis K, Michaelidou K and Vontas J, Highly sensitive droplet digital PCR-based diagnostics for the surveillance of malaria vector populations in low transmission and incipient resistance settings. Expert Rev Mol Diagn 21:1105-1114 (2021).
      Yamanaka T, Kitabayashi S, Jouraku A, Kanamori H, Kuwazaki S and Sudo M, A feasibility trial of genomics-based diagnosis detecting insecticide resistance of the diamondback moth. Pest Manag Sci 78:1573-1581 (2022).
      Gong YJ, Shi BC, Wang ZH, Kang ZJ, Jin GH, Cui WX et al., Toxicity and field control efficacy of the new acaricide bifenazate to the two-spotted mite Tetranychus urticae Koch. Agrochemicals 52:225-227 (2013).
      Gong YJ, Wang ZH, Shi BC, Cui WX, Jin GH, Sun YY et al., Sensitivity of different field populations of Tetranychus urticae Koch (Acari: Tetranychidae) to the acaricides in Beijing area. Scientia Agricultura Sinica 47:2990-2997 (2014).
      Xue WX, Wybouw N and Van Leeuwen T, The G126S substitution in mitochondrially encoded cytochrome b does not confer bifenazate resistance in the spider mite Tetranychus urticae. Exp Appl Acarol 85:161-172 (2021).
      Mermans C, Dermauw W, Geibel S and Van Leeuwen T, A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. Pest Manag Sci 73:2413-2418 (2017).
      Çağatay NS, Menault P, Riga M, Vontas J and Ay R, Identification and characterization of abamectin resistance in Tetranychus urticae Koch populations from greenhouses in Turkey. Crop Prot 112:112-117 (2018).
      Xue W, Lu X, Mavridis K, Vontas J, Jonckheere W and Van Leeuwen T, The H92R substitution in PSST is a reliable diagnostic biomarker for predicting resistance to mitochondrial electron transport inhibitors of complex I in European populations of Tetranychus urticae. Pest Manag Sci 78:3644-3653 (2022).
      Osakabe M, Uesugi R and Goka K, Evolutionary aspects of acaricide-resistance development in spider mites. Psyche: A Journal of Entomology 2009:1-11 (2009).
      Ballard JWO and Whitlock MC, The incomplete natural history of mitochondria. Mol Ecol 13:729-744 (2004).
      Wang R and Wu YD, Dominant fitness costs of abamectin resistance in Plutella xylostella. Pest Manag Sci 70:1872-1876 (2014).
      Dharmarajan G, Beatty WS and Rhodes OE, Heterozygote deficiencies caused by a Wahlund effect: dispelling unfounded expectations. J Wildlife Manage 77:226-234 (2013).
    • Grant Information:
      QNJJ20200 Program of Beijing Academy of Agriculture and Forestry Sciences; CZZJ202101 Program of Beijing Academy of Agriculture and Forestry Sciences; Z201100008320013 Joint Laboratory of Pest Control Research Between China and Australia
    • Contributed Indexing:
      Keywords: Tetranychus urticae; molecular diagnostics; multiple resistance; pesticide; target-site mutation
    • Accession Number:
      0 (Acaricides)
    • Publication Date:
      Date Created: 20230103 Date Completed: 20230404 Latest Revision: 20230404
    • Publication Date:
      20231215
    • Accession Number:
      10.1002/ps.7344
    • Accession Number:
      36594581