Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 7605801 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5336 (Electronic) Linking ISSN: 00992240 NLM ISO Abbreviation: Appl Environ Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, American Society for Microbiology.
    • Subject Terms:
    • Abstract:
      The number of genes encoding β-oxidation enzymes in Cupriavidus necator H16 (synonym, Ralstonia eutropha H16) is high, but only the operons A0459-A0464 and A1526-A1531, each encoding four genes for β-oxidation enzymes, were expressed during growth with long-chain-length fatty acids (LCFAs). However, we observed that C. necator ΔA0459-A0464 ΔA1526-A1531 and C. necator H16 showed the same growth behavior during growth with decanoic acid and shorter FAs. The negative effect of the deletion of these two operons increased with an increasing chain length of the utilized FAs. Transcriptome sequencing (RNA-Seq) revealed the expression profiles of genes involved in the catabolism of medium-chain-length fatty acids (MCFAs) in C. necator H16. Operon A0459-A0464 was expressed only during growth with nonanoic acid, whereas operon A1526-A1531 was highly expressed during growth with octanoic and nonanoic acid. The gene clusters B1187-B1192 and B0751-B0759 showed a log2 fold change in expression of up to 4.29 and 4.02, respectively, during growth with octanoic acid and up to 8.82 and 5.50, respectively, with nonanoic acid compared to sodium gluconate-grown cells. Several acyl-CoA ligases catalyze the activation of MCFAs with coenzyme A (CoA), but fadD3 (A3288), involved in activation of LCFAs, was not detected. The expression profiles of C. necator strain ΔA0459-A0464 ΔA1526-A1531 showed that the growth with nonanoic acid resulted in the expression of further β-oxidation enzyme-encoding genes. Additional insights into the transport of FAs in C. necator H16 revealed the complexity and putative involvement of the DegV-like protein encoded by A0463 in the transport of odd-chain-length FAs and of siderophore biosynthesis in the transport mechanism. IMPORTANCE Although Cupriavidus necator H16 has been used in several studies to produce polyhydroxyalkanoates from various lipids, the fatty acid metabolism is poorly understood. The β-oxidation of long-chain-length FAs has been investigated, but the tremendous number of homologous genes encoding β-oxidation enzymes hides the potential for variances in the expressed genes for catabolism of shorter FAs. The catabolism of medium-chain-length FAs and connected pathways has not been investigated yet. As more sustainable substrates such as lipids and the production of fatty acids and fatty acid derivates become more critical with the dependency on fossil-based substances, understanding the complex metabolism in this highly diverse workhorse for biotechnology, C. necator, is inevitable. For further metabolic engineering and construction of production strains, we investigated the metabolism during growth on medium-chain-length FAs by RNA-Seq.
    • References:
      J Biotechnol. 2015 Nov 20;214:119-27. (PMID: 26428087)
      J Bacteriol. 1981 Nov;148(2):521-6. (PMID: 6271734)
      J Proteomics. 2015 Jun 03;122:86-99. (PMID: 25845584)
      Microbiology (Reading). 2005 Mar;151(Pt 3):825-833. (PMID: 15758228)
      AMB Express. 2011 Jul 13;1(1):16. (PMID: 21906371)
      J Struct Biol. 2020 Jun 1;210(3):107494. (PMID: 32171906)
      Eur J Biochem. 2002 Dec;269(24):6184-94. (PMID: 12473114)
      Biochemistry. 2008 Jul 22;47(29):7744-51. (PMID: 18576672)
      J Biosci Bioeng. 2014 Aug;118(2):145-52. (PMID: 24630613)
      Mol Microbiol. 2021 Jun;115(6):1080-1085. (PMID: 33283913)
      J Bacteriol. 1951 Sep;62(3):293-300. (PMID: 14888646)
      Mol Biosyst. 2015 Jan;11(1):38-59. (PMID: 25360565)
      Arch Mikrobiol. 1961;38:209-22. (PMID: 13747777)
      Nat Biotechnol. 2006 Oct;24(10):1257-62. (PMID: 16964242)
      Arch Microbiol. 2002 Aug;178(2):85-93. (PMID: 12115053)
      Mol Microbiol. 2003 Feb;47(3):793-805. (PMID: 12535077)
      J Biol Chem. 1992 Apr 25;267(12):8685-91. (PMID: 1569108)
      BMC Microbiol. 2013 Jul 23;13:169. (PMID: 23879744)
      Sci Rep. 2021 Jul 12;11(1):14267. (PMID: 34253787)
      Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
      Genome Biol. 2014;15(12):550. (PMID: 25516281)
      J Am Chem Soc. 2012 Mar 21;134(11):5415-22. (PMID: 22381697)
      Microbiol Res. 2018 Jul - Aug;212-213:103-111. (PMID: 29103733)
      PeerJ. 2015 Dec 07;3:e1468. (PMID: 26664804)
      Bioinformatics. 2019 Jun 1;35(12):2084-2092. (PMID: 30395178)
      Appl Environ Microbiol. 2018 Dec 13;85(1):. (PMID: 30366993)
      J Biol Chem. 2019 Jan 4;294(1):38-49. (PMID: 30429218)
      J Biosci Bioeng. 2014 Feb;117(2):184-190. (PMID: 23999062)
      J Biol Chem. 2002 Aug 16;277(33):29369-76. (PMID: 12034706)
      J Mol Microbiol Biotechnol. 2009;16(1-2):38-52. (PMID: 18957861)
      FEMS Microbiol Lett. 2003 Nov 7;228(1):63-71. (PMID: 14612238)
      J Mol Microbiol Biotechnol. 2009;16(1-2):91-108. (PMID: 18957865)
      Res Microbiol. 2001 Apr-May;152(3-4):291-301. (PMID: 11421276)
      F1000Res. 2015 Dec 30;4:1521. (PMID: 26925227)
      J Biol Chem. 1970 Apr 10;245(7):1828-35. (PMID: 4314598)
      Eur J Biochem. 1971 Apr;19(3):442-50. (PMID: 4928881)
      Proc Natl Acad Sci U S A. 1978 Jul;75(7):3377-81. (PMID: 356053)
      Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0003221. (PMID: 34132100)
      Annu Rev Microbiol. 2010;64:43-60. (PMID: 20420522)
      Front Bioeng Biotechnol. 2020 Mar 17;8:169. (PMID: 32258007)
      Arch Microbiol. 1997 Nov;168(5):428-36. (PMID: 9325432)
      J Bacteriol. 2020 Jun 25;202(14):. (PMID: 32366591)
      PLoS One. 2010 May 05;5(5):e10433. (PMID: 20463976)
      EcoSal Plus. 2005 Nov;1(2):. (PMID: 26443509)
      Crit Rev Biotechnol. 2018 Jun;38(4):494-510. (PMID: 29233025)
      Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10532-7. (PMID: 25002480)
      J Biol Chem. 1981 Apr 25;256(8):3735-42. (PMID: 7012142)
      Biotechnol Bioeng. 2012 Jan;109(1):74-83. (PMID: 21809332)
      J Bacteriol. 1996 Nov;178(22):6443-50. (PMID: 8932299)
      Dalton Trans. 2015 Apr 14;44(14):6320-39. (PMID: 25764171)
      J Biol Chem. 2007 Feb 23;282(8):5180-94. (PMID: 17189250)
      Annu Rev Phytopathol. 2008;46:149-87. (PMID: 18680426)
      J Biol Chem. 1992 Dec 15;267(35):25513-20. (PMID: 1460045)
      Mol Microbiol. 2007 Nov;66(4):829-39. (PMID: 17919287)
      Trends Biotechnol. 2021 Apr;39(4):412-424. (PMID: 33518389)
      Nat Methods. 2017 Apr;14(4):417-419. (PMID: 28263959)
      J Biol Chem. 2016 Mar 18;291(12):6292-303. (PMID: 26774272)
      Crit Rev Biotechnol. 2016 Dec;36(6):978-991. (PMID: 26329669)
      J Bacteriol. 2010 Oct;192(20):5454-64. (PMID: 20709892)
      Appl Microbiol Biotechnol. 2014 Feb;98(4):1469-83. (PMID: 24343766)
      J Biol Chem. 2006 Feb 17;281(7):3899-908. (PMID: 16354663)
      Appl Environ Microbiol. 2022 Jan 25;88(2):e0187321. (PMID: 34731045)
      J Bacteriol. 2002 Jul;184(13):3759-64. (PMID: 12057976)
      Biometals. 2015 Jun;28(3):461-72. (PMID: 25619589)
      Eur J Biochem. 1972 Sep 25;29(3):553-62. (PMID: 4563344)
      J Bacteriol. 1996 Sep;178(18):5499-507. (PMID: 8808942)
      J Bacteriol. 1981 Jul;147(1):198-205. (PMID: 6787025)
      Acta Crystallogr D Biol Crystallogr. 2009 May;65(Pt 5):440-8. (PMID: 19390149)
      Microbiol Mol Biol Rev. 2003 Sep;67(3):454-72, table of contents. (PMID: 12966144)
      Cell Mol Life Sci. 2013 Mar;70(5):863-91. (PMID: 22869039)
      Appl Microbiol Biotechnol. 2013 Mar;97(6):2443-54. (PMID: 22588499)
      Curr Top Membr. 2012;69:37-66. (PMID: 23046646)
      J Bacteriol. 1987 Jan;169(1):42-52. (PMID: 3025185)
    • Contributed Indexing:
      Keywords: Cupriavidus necator; RNA sequencing; Ralstonia eutropha; medium-chain-length fatty acid catabolism; β-oxidation
    • Accession Number:
      0 (Fatty Acids)
      0 (Polyhydroxyalkanoates)
    • Publication Date:
      Date Created: 20221221 Date Completed: 20230202 Latest Revision: 20230701
    • Publication Date:
      20231215
    • Accession Number:
      PMC9888253
    • Accession Number:
      10.1128/aem.01428-22
    • Accession Number:
      36541797