Oropouche Virus Glycoprotein Topology and Cellular Requirements for Glycoprotein Secretion.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Society For Microbiology Country of Publication: United States NLM ID: 0113724 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5514 (Electronic) Linking ISSN: 0022538X NLM ISO Abbreviation: J Virol Subsets: MEDLINE
    • Publication Information:
      Publication: Washington Dc : American Society For Microbiology
      Original Publication: Baltimore, American Society for Microbiology.
    • Subject Terms:
    • Abstract:
      Oropouche virus (OROV; genus Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. We used recombinant expression of the OROV M polyprotein, which encodes the surface glycoproteins Gn and Gc plus the nonstructural protein NSm, to probe the cellular determinants for OROV assembly and budding. Gn and Gc self-assemble and are secreted independently of NSm. Mature OROV Gn has two predicted transmembrane domains that are crucial for glycoprotein translocation to the Golgi complex and glycoprotein secretion, and unlike related orthobunyaviruses, both transmembrane domains are retained during Gn maturation. Disruption of Golgi function using the drugs brefeldin A and monensin inhibits glycoprotein secretion. Infection studies have previously shown that the cellular endosomal sorting complexes required for transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. A dominant-negative form of the ESCRT-associated ATPase VPS4 significantly reduces recombinant OROV glycoprotein secretion and blocks virus release from infected cells, and VPS4 partly colocalizes with OROV glycoproteins and membranes costained with Golgi markers. Furthermore, immunoprecipitation and fluorescence microscopy experiments demonstrate that OROV glycoproteins interact with the ESCRT-III component CHMP6, with overexpression of a dominant-negative form of CHMP6 significantly reducing OROV glycoprotein secretion. Taken together, our data highlight differences in M polyprotein processing across orthobunyaviruses, indicate that Golgi and ESCRT function are required for glycoprotein secretion, and identify CHMP6 as an ESCRT-III component that interacts with OROV glycoproteins. IMPORTANCE Oropouche virus causes Oropouche fever, a debilitating illness common in South America that is characterized by high fever, headache, myalgia, and vomiting. The tripartite genome of this zoonotic virus is capable of reassortment, and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We developed a recombinant protein expression system to investigate the cellular determinants of OROV glycoprotein maturation and secretion. We show that the proteolytic processing of the M polypeptide, which encodes the surface glycoproteins (Gn and Gc) plus a nonstructural protein (NSm), differs between OROV and its close relative Bunyamwera virus. Furthermore, we demonstrate that OROV M glycoprotein secretion requires the cellular endosomal sorting complexes required for transport (ESCRT) membrane-remodeling machinery and identify that the OROV glycoproteins interact with the ESCRT protein CHMP6.
    • References:
      Viruses. 2018 Apr 04;10(4):. (PMID: 29617280)
      BMC Bioinformatics. 2017 Nov 29;18(1):529. (PMID: 29187165)
      J Virol. 2005 Sep;79(17):10852-63. (PMID: 16103138)
      J Virol. 2003 Oct;77(19):10700-5. (PMID: 12970458)
      Biochim Biophys Acta. 1990 May 7;1031(2):225-46. (PMID: 2160275)
      J Gen Virol. 2015 Mar;96(Pt 3):513-523. (PMID: 25491420)
      J Virol. 2007 Jul;81(14):7380-7. (PMID: 17507493)
      Genes Dev. 1999 May 15;13(10):1211-33. (PMID: 10346810)
      J Virol. 2004 Jan;78(2):999-1005. (PMID: 14694131)
      Cell Microbiol. 2013 Feb;15(2):213-26. (PMID: 23051622)
      J Virol. 2014 Feb;88(4):2344-8. (PMID: 24335294)
      Nat Rev Mol Cell Biol. 2020 Jan;21(1):25-42. (PMID: 31705132)
      Nat Rev Microbiol. 2014 Oct;12(10):673-85. (PMID: 25198140)
      J Gen Virol. 1994 Dec;75 ( Pt 12):3441-51. (PMID: 7996137)
      Viruses. 2017 Aug 11;9(8):. (PMID: 28800086)
      Elife. 2020 May 11;9:. (PMID: 32391791)
      J Biol Chem. 1988 Dec 5;263(34):18545-52. (PMID: 3192548)
      Science. 2018 Dec 21;362(6421):1423-1428. (PMID: 30573630)
      J Virol. 2004 Jun;78(11):5679-85. (PMID: 15140965)
      Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19140-5. (PMID: 17146056)
      J Gen Virol. 2020 Jan;101(1):1-2. (PMID: 31846417)
      J Virol. 2003 Jan;77(2):1368-81. (PMID: 12502853)
      Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
      J Virol. 2013 Jul;87(14):8205-12. (PMID: 23698297)
      J Virol. 2018 May 29;92(12):. (PMID: 29618648)
      Microbes Infect. 2018 Mar;20(3):135-146. (PMID: 29247710)
      J Virol. 2009 Nov;83(21):11254-64. (PMID: 19692479)
      J Virol. 2015 Dec 23;90(5):2616-27. (PMID: 26699638)
      J Virol. 2006 Nov;80(21):10428-35. (PMID: 16928751)
      J Gen Virol. 2013 Apr;94(Pt 4):851-859. (PMID: 23255627)
      Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8825-30. (PMID: 27439867)
      J Virol. 2007 Sep;81(18):10151-60. (PMID: 17609275)
      J Virol. 2002 May;76(10):4679-87. (PMID: 11967285)
      J Cell Biol. 1982 Jun;93(3):576-82. (PMID: 6811596)
      J Mol Biol. 2001 Jan 19;305(3):567-80. (PMID: 11152613)
      Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42. (PMID: 21209361)
      J Gen Virol. 2007 Dec;88(Pt 12):3385-3390. (PMID: 18024908)
      Sci Adv. 2019 Apr 10;5(4):eaau7198. (PMID: 30989108)
      Cell Host Microbe. 2013 Sep 11;14(3):232-41. (PMID: 24034610)
      J Virol. 2006 Aug;80(16):8089-99. (PMID: 16873265)
      Trends Biochem Sci. 2017 Jan;42(1):42-56. (PMID: 27669649)
      J Virol. 2007 Apr;81(7):3198-205. (PMID: 17229712)
      J Virol. 2005 Nov;79(21):13725-34. (PMID: 16227292)
      J Microsc. 2006 Dec;224(Pt 3):213-32. (PMID: 17210054)
      Cell Rep. 2016 Aug 30;16(9):2339-47. (PMID: 27545892)
      J Cell Biol. 1997 Dec 1;139(5):1137-55. (PMID: 9382862)
      PLoS Pathog. 2018 May 3;14(5):e1007047. (PMID: 29723305)
      J Virol. 2004 Oct;78(19):10793-802. (PMID: 15367646)
      J Virol. 2020 Feb 14;94(5):. (PMID: 31801869)
      Methods Mol Biol. 2017;1611:59-73. (PMID: 28451972)
      Nat Commun. 2019 Feb 20;10(1):879. (PMID: 30787296)
      J Microsc. 1993 Mar;169(3):375-382. (PMID: 33930978)
    • Grant Information:
      United Kingdom WT_ Wellcome Trust; 098406 United Kingdom WT_ Wellcome Trust; BB/S018670/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; 098406/Z/12/B United Kingdom WT_ Wellcome Trust
    • Contributed Indexing:
      Keywords: Bunyamwera virus; ESCRT; Oropouche fever; Oropouche virus; arbovirus; bunyavirus; polyprotein processing; virus budding
    • Accession Number:
      0 (Endosomal Sorting Complexes Required for Transport)
      0 (Membrane Glycoproteins)
      0 (Viral Proteins)
      0 (CHMP6 protein, human)
    • Subject Terms:
      Oropouche orthobunyavirus
    • Publication Date:
      Date Created: 20221208 Date Completed: 20230207 Latest Revision: 20240629
    • Publication Date:
      20240629
    • Accession Number:
      PMC9888203
    • Accession Number:
      10.1128/jvi.01331-22
    • Accession Number:
      36475765