Biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening for over-production phenotypes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Wang J;Wang J; Li C; Li C; Jiang T; Jiang T; Yan Y; Yan Y
  • Source:
    Metabolic engineering [Metab Eng] 2023 Jan; Vol. 75, pp. 58-67. Date of Electronic Publication: 2022 Nov 12.
  • Publication Type:
    Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Academic Press Country of Publication: Belgium NLM ID: 9815657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-7184 (Electronic) Linking ISSN: 10967176 NLM ISO Abbreviation: Metab Eng Subsets: MEDLINE
    • Publication Information:
      Original Publication: Brugge, Belgium ; Orlando, FL : Academic Press, c1999-
    • Subject Terms:
    • Abstract:
      With rapid advances in the development of metabolic pathways and synthetic biology toolkits, a persisting challenge in microbial bioproduction is how to optimally rewire metabolic fluxes and accelerate the concomitant high-throughput phenotype screening. Here we developed a biosensor-assisted titratable CRISPRi high-throughput (BATCH) screening approach that combines a titratable mismatch CRISPR interference and a biosensor mediated screening for high-production phenotypes in Escherichia coli. We first developed a programmable mismatch CRISPRi that could afford multiple levels of interference efficacy with a one-pot sgRNA pool (a total of 16 variants for each target gene) harboring two consecutive random mismatches in the seed region of sgRNA spacers. The mismatch CRISPRi was demonstrated to enable almost a full range of gene knockdown when targeting different positions on genes. As a proof-of-principle demonstration of the BATCH screening system, we designed doubly mismatched sgRNA pools targeting 20 relevant genes in E. coli and optimized a PadR-based p-coumaric acid biosensor with broad dynamic range for the eGFP fluorescence guided high-production screening. Using sgRNA variants for the combinatorial knockdown of pfkA and ptsI, the p-coumaric acid titer was increased by 40.6% to o 1308.6 mg/l from glycerol in shake flasks. To further demonstrate the general applicability of the BATCH screening system, we recruited a HpdR-based butyrate biosensor that facilitated the screening of E. coli strains achieving 19.0% and 25.2% increase of butyrate titer in shake flasks with sgRNA variants targeting sucA and ldhA, respectively. This work reported the establishment of a plug-and-play approach that enables multilevel modulation of metabolic fluxes and high-throughput screening of high-production phenotypes.
      Competing Interests: Declaration of competing interest The authors declare that they have no conflicts of interest.
      (Copyright © 2022 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.)
    • References:
      Cell Syst. 2020 Nov 18;11(5):523-535.e9. (PMID: 33080209)
      Nat Commun. 2020 Oct 23;11(1):5385. (PMID: 33097726)
      Biotechnol Adv. 2009 Nov-Dec;27(6):979-988. (PMID: 19464354)
      Metab Eng. 2009 May;11(3):192-8. (PMID: 19558964)
      Metab Eng. 2016 May;35:148-159. (PMID: 26855240)
      Nucleic Acids Res. 2014 Oct;42(18):11383-92. (PMID: 25209233)
      Front Plant Sci. 2015 Jan 29;6:7. (PMID: 25688249)
      Chem Soc Rev. 2020 Jul 21;49(14):4615-4636. (PMID: 32567619)
      Nat Chem Biol. 2022 Feb;18(2):199-206. (PMID: 34949838)
      J Agric Food Chem. 2014 May 14;62(19):4342-8. (PMID: 24773075)
      Curr Opin Chem Biol. 2015 Oct;28:1-8. (PMID: 26056948)
      Nucleic Acids Res. 2019 Dec 2;47(21):11007-11019. (PMID: 31598685)
      Nat Rev Microbiol. 2022 Jan;20(1):35-48. (PMID: 34341566)
      Nucleic Acids Res. 2020 Jun 19;48(11):e64. (PMID: 32352514)
      Nat Commun. 2018 Jun 26;9(1):2475. (PMID: 29946130)
      Curr Protoc Mol Biol. 2007 Jul;Chapter 1:1.17.1-1.17.8. (PMID: 18265391)
      Metab Eng. 2022 Mar;70:67-78. (PMID: 35033655)
      ACS Synth Biol. 2017 Oct 20;6(10):1922-1930. (PMID: 28618222)
      Nature. 2015 Nov 5;527(7576):110-3. (PMID: 26524520)
      Proc Natl Acad Sci U S A. 2007 May 8;104(19):7797-802. (PMID: 17463081)
      Metab Eng. 2015 May;29:217-226. (PMID: 25863265)
      Metab Eng. 2014 May;23:165-74. (PMID: 24704310)
      Curr Opin Biotechnol. 2020 Dec;66:171-178. (PMID: 32853882)
      Nucleic Acids Res. 2013 Aug;41(15):7429-37. (PMID: 23761437)
      Sci Rep. 2017 May 11;7(1):1724. (PMID: 28496205)
      Nat Rev Drug Discov. 2003 Dec;2(12):1019-25. (PMID: 14654799)
      Nat Chem Biol. 2019 Mar;15(3):217-220. (PMID: 30531984)
      Metab Eng. 2008 Nov;10(6):305-11. (PMID: 17942358)
      Nat Commun. 2021 Nov 25;12(1):6916. (PMID: 34824292)
      Nucleic Acids Res. 2018 Nov 16;46(20):11115-11125. (PMID: 30289463)
      Appl Microbiol Biotechnol. 2021 Jun;105(12):5173-5187. (PMID: 34115183)
      Metab Eng. 2012 Sep;14(5):477-86. (PMID: 22871504)
      Curr Opin Biotechnol. 2016 Feb;37:97-104. (PMID: 26716360)
      Curr Biol. 2019 May 20;29(10):R381-R393. (PMID: 31112692)
      Nat Biotechnol. 2008 Jun;26(6):659-67. (PMID: 18536691)
      Nat Protoc. 2022 Feb;17(2):252-281. (PMID: 34997243)
      Cell. 2013 Feb 28;152(5):1173-83. (PMID: 23452860)
      Methods Mol Biol. 2015;1311:349-62. (PMID: 25981485)
      ACS Synth Biol. 2021 Jan 15;10(1):132-144. (PMID: 33378169)
      PLoS Genet. 2018 Nov 7;14(11):e1007749. (PMID: 30403660)
      Nucleic Acids Res. 2021 Feb 22;49(3):1263-1277. (PMID: 33503261)
      Biotechnol Bioeng. 2013 Dec;110(12):3188-96. (PMID: 23801069)
      Cell Rep. 2021 Aug 24;36(8):109589. (PMID: 34433019)
      Nat Biotechnol. 2013 Feb;31(2):170-4. (PMID: 23334451)
      Proc Natl Acad Sci U S A. 2021 May 4;118(18):. (PMID: 33906944)
      Nat Commun. 2017 Jun 28;8:15939. (PMID: 28656978)
      Cell. 2016 Sep 8;166(6):1397-1410.e16. (PMID: 27610566)
      Appl Microbiol Biotechnol. 2016 Dec;100(23):10005-10018. (PMID: 27654654)
      Cell. 2014 Oct 23;159(3):647-61. (PMID: 25307932)
      Nat Commun. 2012 Jul 10;3:945. (PMID: 22781758)
      Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2502-7. (PMID: 26884157)
      Nat Commun. 2017 Mar 03;8:14633. (PMID: 28256578)
      Nat Biotechnol. 2020 Mar;38(3):355-364. (PMID: 31932729)
      Nat Commun. 2018 May 15;9(1):1912. (PMID: 29765036)
      Science. 2013 Feb 15;339(6121):819-23. (PMID: 23287718)
      Biotechnol Appl Biochem. 2020 Jan;67(1):7-21. (PMID: 32064678)
      Nature. 2009 Aug 13;460(7257):894-898. (PMID: 19633652)
      Science. 2010 Dec 3;330(6009):1355-8. (PMID: 21127247)
      Metab Eng. 2018 Jan;45:1-10. (PMID: 29155059)
      Nat Biotechnol. 2011 Aug 05;29(8):693-5. (PMID: 21822239)
      Metab Eng. 2008 Nov;10(6):312-20. (PMID: 18775501)
      Nat Biotechnol. 2019 Jun;37(6):657-666. (PMID: 30988504)
      Nucleic Acids Res. 1997 Mar 15;25(6):1203-10. (PMID: 9092630)
      Nat Commun. 2022 Feb 16;13(1):891. (PMID: 35173152)
    • Grant Information:
      R35 GM128620 United States GM NIGMS NIH HHS
    • Contributed Indexing:
      Keywords: Biosensor; Butyrate; Mismatch CRISPRi; Titratable repression; p-Coumaric acid
    • Accession Number:
      IBS9D1EU3J (p-coumaric acid)
      0 (Coumaric Acids)
    • Publication Date:
      Date Created: 20221114 Date Completed: 20230117 Latest Revision: 20240102
    • Publication Date:
      20240102
    • Accession Number:
      PMC9845192
    • Accession Number:
      10.1016/j.ymben.2022.11.004
    • Accession Number:
      36375746