Development and radiosterilization of new hydrazono-quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262549 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1747-0285 (Electronic) Linking ISSN: 17470277 NLM ISO Abbreviation: Chem Biol Drug Des Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Wiley-Blackwell, 2006-
    • Subject Terms:
    • Abstract:
      This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 μg/ml against bacteria and ≤8.0 μg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC 50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) μM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the ɣ-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.
      (© 2022 John Wiley & Sons Ltd.)
    • References:
      Abdel-Aziz, H. A., Ghabbour, H. A., Eldehna, W. M., Qabeel, M. M., & Fun, H.-K. (2014). Synthesis, crystal structure, and biological activity of cis/trans amide rotomers of (Z)-N′-(2-Oxoindolin-3-ylidene)formohydrazide. Journal of Chemistry, 2014, 760434. https://doi.org/10.1155/2014/760434.
      Abdelhamid, A. O., & Gomha, S. M. (2017). Synthesis and characterization of new pyrazole-based thiazoles. Synthetic Communications, 47, 1409-1414. https://doi.org/10.1080/00397911.2017.1330961.
      Abdelrahman, M. A., Salama, I., Gomaa, M. S., Elaasser, M. M., Abdel-Aziz, M. M., & Soliman, D. H. (2017). Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. European Journal of Medicinal Chemistry, 138, 698-714. https://doi.org/10.1016/j.ejmech.2017.07.004.
      Abu-Melha, S., Edrees, M. M., Riyadh, S. M., Abdelaziz, M. R., Elfiky, A. A., & Gomha, S. M. (2020). Clean grinding technique: a facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro). Molecules, 25, 4565. https://doi.org/10.3390/molecules25194565.
      Aldred, K. J., Schwanz, H. A., Li, G., McPherson, S. A., Turnbough, C. L., Kerns, R. J., & Osheroff, N. (2013). Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug-enzyme interactions. ACS Chemical Biology, 8, 2660-2668.
      Ali Mohamed, H., Ammar, Y. A., Elhagali, G. A. M., Eyada, H. A., Aboul-Magd, D. S., & Ragab, A. (2022). In vitro antimicrobial evaluation, single-point resistance study, and radiosterilization of novel pyrazole incorporating thiazol-4-one/thiophene derivatives as dual DNA Gyrase and DHFR inhibitors against MDR pathogens. ACS Omega, 7, 4970-4990. https://doi.org/10.1021/acsomega.1c05801.
      Almaaytah, A., Qaoud, M. T., Khalil Mohammed, G., Abualhaijaa, A., Knappe, D., Hoffmann, R., & Al-Balas, Q. (2018). Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmacogenetics, 11, 3. https://doi.org/10.3390/ph11010003.
      Al-Marhabi, A. R., Abbas, H.-A. S., & Ammar, Y. A. (2015). Synthesis, characterization and biological evaluation of some quinoxaline derivatives: A promising and potent new class of antitumor and antimicrobial agents. Molecules, 20, 19805-19822. https://doi.org/10.3390/molecules201119655.
      Alotaibi, S. H., & Amer, H. H. (2020). Synthesis, spectroscopic and molecular docking studies on new schiff bases, nucleosides and α-aminophosphonate derivatives as antibacterial agents. Saudi Journal of Biological Sciences, 27, 3481-3488. https://doi.org/10.1016/j.sjbs.2020.09.061.
      Alzahrani, A. Y., Ammar, Y. A., Abu-Elghait, M., Salem, M. A., Assiri, M. A., Ali, T. E., & Ragab, A. (2022). Development of novel indolin-2-one derivative incorporating thiazole moiety as DHFR and quorum sensing inhibitors: Synthesis, antimicrobial, and antibiofilm activities with molecular modelling study. Bioorganic Chemistry, 119, 105571. https://doi.org/10.1016/j.bioorg.2021.105571.
      Alzahrani, A. Y., Ammar, Y. A., Salem, M. A., Abu-Elghait, M., & Ragab, A. (2022). Design, synthesis, molecular modeling, and antimicrobial potential of novel 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives as DNA gyrase inhibitors. Archiv der Pharmazie, 355, e2100266. https://doi.org/10.1002/ardp.202100266.
      Ammar, Y. A., El-Hafez, S. M. A. A., Hessein, S. A., Ali, A. M., Askar, A. A., & Ragab, A. (2021). One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study. Journal of Molecular Structure, 1242, 130748. https://doi.org/10.1016/j.molstruc.2021.130748.
      Ammar, Y. A., Farag, A. A., Ali, A. M., Hessein, S. A., Askar, A. A., Fayed, E. A., Elsisi, D. M., & Ragab, A. (2020). Antimicrobial evaluation of thiadiazino and thiazolo quinoxaline hybrids as potential DNA gyrase inhibitors; design, synthesis, characterization and morphological studies. Bioorganic Chemistry, 99, 103841. https://doi.org/10.1016/j.bioorg.2020.103841.
      Ammar, Y. A., Farag, A. A., Ali, A. M., Ragab, A., Askar, A. A., Elsisi, D. M., & Belal, A. (2020). Design, synthesis, antimicrobial activity and molecular docking studies of some novel di-substituted sulfonylquinoxaline derivatives. Bioorganic Chemistry, 104, 104164. https://doi.org/10.1016/j.bioorg.2020.104164.
      Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: Is it possible to reverse resistance? Nature Reviews. Microbiology, 8, 260-271. https://doi.org/10.1038/nrmicro2319.
      Bader, M. S., Loeb, M., Leto, D., & Brooks, A. A. (2020). Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgraduate Medicine, 132, 234-250. https://doi.org/10.1080/00325481.2019.1680052.
      Becker, K., Cao, S., Nilsson, A., Erlandsson, M., Hotop, S.-K., Kuka, J., Hansen, J., Haldimann, K., Grinberga, S., Berruga-Fernández, T., Huseby, D. L., Shariatgorji, R., Lindmark, E., Platzack, B., Böttger, E. C., Crich, D., Friberg, L. E., Vingsbo Lundberg, C., Hughes, D., … Hobbie, S. N. (2021). Antibacterial activity of apramycin at acidic pH warrants wide therapeutic window in the treatment of complicated urinary tract infections and acute pyelonephritis. eBioMedicine, 73, 103652. https://doi.org/10.1016/j.ebiom.2021.103652.
      Bednarczuk, V. O., Verdam, M. C. S., Miguel, M. D., & Miguel, O. G. (2010). Tests in vitro and in vivo used in the toxicological screening of natural products. Visão Acadêmica, 11, 1518-5192.
      Bonassa, K. P. D., Miragliotta, M. Y., Simas, R. C., Monteiro, D. A., Eberlin, M. N., Anadón, A., & Reyes, F. G. R. (2017). Tissue depletion study of enrofloxacin and its metabolite ciprofloxacin in broiler chickens after oral administration of a new veterinary pharmaceutical formulation containing enrofloxacin. Food and Chemical Toxicology, 105, 8-13. https://doi.org/10.1016/j.fct.2017.03.033.
      Chen, Y.-H., Ko, W.-C., & Hsueh, P.-R. (2013). Emerging resistance problems and future perspectives in pharmacotherapy for complicated urinary tract infections. Expert Opinion on Pharmacotherapy, 14, 587-596. https://doi.org/10.1517/14656566.2013.778827.
      Çolak, Ş. (2015). Ionizing radiation used in drug sterilization, characterization of radical intermediates by electron spin resonance (ESR) analyses. Evolution of Ionizing Radiation Research, 281. https://books.google.com.eg/books?hl=ar&lr=&id=rmmQDwAAQBAJ&oi=fnd&pg=PA281&dq=%C3%87olak,+%C5%9E.+(2015).+Ionizing+radiation+used+in+drug+sterilization,+characterization+of+radical+intermediates+by+electron+spin+resonance+(ESR)+analyses.+Evolution+of+Ionizing+Radiation+Research,+281.&ots=q_DYjOeUcB&sig=Ru_cGJLjxU_zJr3uC2KWfftJqm0&redir_esc=y#v=onepage&q&f=false.
      Collin, F., Karkare, S., & Maxwell, A. (2011). Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Applied Microbiology and Biotechnology, 92, 479-497. https://doi.org/10.1007/s00253-011-3557-z.
      Davanço, M. G., Aguiar, A. C. C., dos Santos, L. A., Padilha, E. C., Campos, M. L., de Andrade, C. R., da Fonseca, L. M., dos Santos, J. L., Chin, C. M., Krettli, A. U., & Peccinini, R. G. (2014). Evaluation of antimalarial activity and toxicity of a new primaquine prodrug. PLoS One, 9, e105217.
      de Cueto, M., Aliaga, L., Alós, J.-I., Canut, A., Los-Arcos, I., Martínez, J. A., Mensa, J., Pintado, V., Rodriguez-Pardo, D., Yuste, J. R., & Pigrau, C. (2017). Executive summary of the diagnosis and treatment of urinary tract infection: Guidelines of the Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC). Enfermedades Infecciosas y Microbiología Clínica, 35, 314-320. https://doi.org/10.1016/j.eimc.2016.11.005.
      Demirbas, N., Karaoglu, S. A., Demirbas, A., & Sancak, K. (2004). Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl)methyl-5-oxo-[1,2,4]triazole and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo- [1,2,4]triazole derivatives. European Journal of Medicinal Chemistry, 39, 793-804. https://doi.org/10.1016/j.ejmech.2004.06.007.
      Dighe, S. N., & Collet, T. A. (2020). Recent advances in DNA gyrase-targeted antimicrobial agents. European Journal of Medicinal Chemistry, 199, 112326. https://doi.org/10.1016/j.ejmech.2020.112326.
      Eissa, S. I., Farrag, A. M., Abbas, S. Y., El Shehry, M. F., Ragab, A., Fayed, E. A., & Ammar, Y. A. (2021). Novel Structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorganic Chemistry, 110,104803. https://doi.org/10.1016/j.bioorg.2021.104803.
      Eldeeb, M., Sanad, E. F., Ragab, A., Ammar, Y. A., Mahmoud, K., Ali, M. M., & Hamdy, N. M. (2022). Anticancer effects with molecular docking confirmation of newly synthesized Isatin sulfonamide molecular hybrid derivatives against hepatic cancer cell lines. Biomédica, 10, 722. https://doi.org/10.3390/biomedicines10030722.
      El-Kalyoubi, S. A., Taher, E. S., Ibrahim, T. S., El-Behairy, M. F., & Al-Mahmoudy, A. M. M. (2022). One-pot synthesis and molecular modeling studies of new bioactive spiro-oxindoles based on uracil derivatives as SARS-CoV-2 inhibitors targeting RNA polymerase and spike glycoprotein. Arctic Pharma, 15, 376. https://doi.org/10.3390/ph15030376.
      Elsisi, D. M., Ragab, A., Elhenawy, A. A., Farag, A. A., Ali, A. M., & Ammar, Y. A. (2022). Experimental and theoretical investigation for 6-Morpholinosulfonylquinoxalin-2(1H)-one and its haydrazone derivate: Synthesis, characterization, tautomerization and antimicrobial evaluation. Journal of Molecular Structure, 1247, 131314. https://doi.org/10.1016/j.molstruc.2021.131314.
      Eswaran, S., Adhikari, A. V., Pal, N. K., & Chowdhury, I. H. (2010). Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorganic & Medicinal Chemistry Letters, 20, 1040-1044. https://doi.org/10.1016/j.bmcl.2009.12.045.
      Ezzat, A., Mohamed, M. B. I., Mahmoud, A. M., Farag, R. S., El-Tabl, A. S., & Ragab, A. (2022). Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies of new Cu (II), Zn (II) thiosemicarbazone based on sulfonyl isatin. Journal of Molecular Structure, 1251, 132004. https://doi.org/10.1016/j.molstruc.2021.132004.
      Fayed, E. A., Ammar, Y. A., Ragab, A., Gohar, N. A., Mehany, A. B. M., & Farrag, A. M. (2020). In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorganic Chemistry, 100, 103951. https://doi.org/10.1016/j.bioorg.2020.103951.
      Fayed, E. A., Ammar, Y. A., Saleh, M. A., Bayoumi, A. H., Belal, A., Mehany, A. B. M., & Ragab, A. (2021). Design, synthesis, antiproliferative evaluation, and molecular docking study of new quinoxaline derivatives as apoptotic inducers and EGFR inhibitors. Journal of Molecular Structure, 1236, 130317. https://doi.org/10.1016/j.molstruc.2021.130317.
      Fayed, E. A., Mohsen, M., El-Gilil, S. M. A., Aboul-Magd, D. S., & Ragab, A. (2022). Novel cyclohepta[b]thiophene derivative incorporating pyrimidine, pyridine, and chromene moiety as potential antimicrobial agents targeting DNA gyrase. Journal of Molecular Structure, 1262, 133028. https://doi.org/10.1016/j.molstruc.2022.133028.
      Fayed, E. A., Ragab, A., Ezz Eldin, R. R., Bayoumi, A. H., & Ammar, Y. A. (2021). In vivo screening and toxicity studies of indolinone incorporated thiosemicarbazone, thiazole and piperidinosulfonyl moieties as anticonvulsant agents. Bioorganic Chemistry, 116, 105300. https://doi.org/10.1016/j.bioorg.2021.105300.
      Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews. Microbiology, 13, 269-284. https://doi.org/10.1038/nrmicro3432.
      Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews. Urology, 7, 653-660. https://doi.org/10.1038/nrurol.2010.190.
      Foxman, B. (2014). Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics, 28, 1-13. https://doi.org/10.1016/j.idc.2013.09.003.
      Gatsing, D., Tchakoute, V., Ngamga, D., Kuiate, J. R., Tamokou, J. D. D., Nji Nkah, B. F., & Tchouanguep, F. M. (2009). In vitro antibacterial activity of crinum Purpurascens herb leaf extract against the Salmonella species causing typhoid fever and its toxicological evaluation. Iranian Journal of Medical Sciences, 34, 126-136.
      Geddes-McAlister, J., & Shapiro, R. S. (2019). New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Annals of the New York Academy of Sciences, 1435, 57-78. https://doi.org/10.1111/nyas.13739.
      Gomha, S. M. (2018). Efficient synthesis of new benzofuran-based thiazoles and investigation of their cytotoxic activity against human breast carcinoma cell lines. Journal of Heterocyclic Chemistry, 55, 995-1001. https://doi.org/10.1002/jhet.3131.
      Gomha, S. M., Edrees, M. M., & Altalbawy, F. M. (2016). Synthesis and characterization of some new bis -pyrazolyl-thiazoles incorporating the thiophene moiety as potent anti-tumor agents. International Journal of Molecular Sciences, 17, 1449. https://doi.org/10.3390/ijms17091499.
      Gomha, S. M., Muhammad, Z. A., Abdel-aziz, H. M., Matar, I. K., & El-Sayed, A. A. (2020). Green synthesis, molecular docking and anticancer activity of novel 1,4-dihydropyridine-3,5-Dicarbohydrazones under grind-stone chemistry. Green Chemistry Letters and Reviews, 13, 6-17. https://doi.org/10.1080/17518253.2019.1710268.
      Hassan, A. S., Askar, A. A., Naglah, A. M., Naglah, A. M., Almehizia, A. A., Almehizia, A. A., & Ragab, A. (2020). Discovery of new Schiff bases tethered pyrazole moiety: Design, synthesis, biological evaluation, and molecular docking study as dual targeting DHFR/DNA gyrase inhibitors with immunomodulatory activity. Molecules, 25, 2593. https://doi.org/10.3390/molecules25112593.
      Hassan, A. S., Morsy, N. M., Awad, H. M., & Ragab, A. (2022). Synthesis, molecular docking, and in silico ADME prediction of some fused pyrazolo[1,5-a]pyrimidine and pyrazole derivatives as potential antimicrobial agents. Journal of the Iranian Chemical Society, 19, 521-545. https://doi.org/10.1007/s13738-021-02319-4.
      Ibrahim, S. A., Fayed, E. A., Rizk, H. F., Desouky, S. E., & Ragab, A. (2021). Hydrazonoyl bromide precursors as DHFR inhibitors for the synthesis of bis-thiazolyl pyrazole derivatives; antimicrobial activities, antibiofilm, and drug combination studies against MRSA. Bioorganic Chemistry, 116, 105339. https://doi.org/10.1016/j.bioorg.2021.105339.
      Ibrahim, S. A., Ragab, A., & El-Ghamry, H. A. (2022). Coordination compounds of pyrazolone-based ligand: Design, characterization, biological evaluation, antitumor efficiency, and DNA binding evaluation supported by in silico studies. Applied Organometallic Chemistry, 36, e6508. https://doi.org/10.1002/aoc.6508.
      Ibrahim, S. A., Rizk, H. F., Aboul-Magd, D. S., & Ragab, A. (2021). Design, synthesis of new magenta dyestuffs based on thiazole azomethine disperse reactive dyes with antibacterial potential on both dyes and gamma-irradiated dyed fabric. Dyes and Pigments, 193, 109504. https://doi.org/10.1016/j.dyepig.2021.109504.
      Javadzadeh, Y., & Hamedeyazdan, S. (2014). Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease. In B. M. Roesler (Ed.), Trends in Helicobacter pylori Infection. IntechOpen. https://doi.org/10.5772/57353.
      Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G., & Kozikowski, A. P. (2006). Design, synthesis, and SAR studies of mefloquine-based ligands as potential antituberculosis agents. ChemMedChem, 1, 667. https://doi.org/10.1002/cmdc.200690024.
      Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm matrixome: Extracellular components in structured microbial communities. Trends in Microbiology, 28, 668-681. https://doi.org/10.1016/j.tim.2020.03.016.
      Kassab, R. M., Gomha, S. M., Al-Hussain, S. A., Abo Dena, A. S., Abdel-Aziz, M. M., Zaki, M. E. A., & Muhammad, Z. A. (2021). Synthesis and in-silico simulation of some new bis-thiazole derivatives and their preliminary antimicrobial profile: investigation of hydrazonoyl chloride addition to hydroxy-functionalized bis-carbazones. Arabian Journal of Chemistry, 14, 103396. https://doi.org/10.1016/j.arabjc.2021.103396.
      Kella, C. R., Balachandran, C., Arun, Y., Kaliyappan, E., Mahalingam, S. M., Ignacimuthu, S., Arumugam, N., Almansour, A. I., Suresh Kumar, R., & Perumal, P. T. (2020). A novel class of 1,4-disubstituted 1,2,3-triazoles: Regioselective synthesis, antimicrobial activity and molecular docking studies. Arabian Journal of Chemistry, 13, 9047-9057. https://doi.org/10.1016/j.arabjc.2020.10.026.
      Keri, R. S., & Patil, S. A. (2014). Quinoline: A promising antitubercular target. Biomedicine & Pharmacotherapy, 68, 1161-1175. https://doi.org/10.1016/j.biopha.2014.10.007.
      Khattab, E. S. A. E. H., Ragab, A., Abol-Ftouh, M. A., & Elhenawy, A. A. (2022). Therapeutic strategies for Covid-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins. Journal of Biomolecular Structure & Dynamics, 40, 1-19. https://doi.org/10.1080/07391102.2021.1989036.
      Leitner, L., Ujmajuridze, A., Chanishvili, N., Goderdzishvili, M., Chkonia, I., Rigvava, S., Chkhotua, A., Changashvili, G., McCallin, S., Schneider, M. P., Liechti, M. D., Mehnert, U., Bachmann, L. M., Sybesma, W., & Kessler, T. M. (2021). Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. The Lancet Infectious Diseases, 21, 427-436. https://doi.org/10.1016/S1473-3099(20)30330-3.
      Levine, C., Hiasa, H., & Marians, K. J. (1998). DNA gyrase and topoisomerase IV: Biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochimica et Biophysica Acta - Gene Structure and Expression, 1400, 29-43. https://doi.org/10.1016/S0167-4781(98)00126-2.
      Masadeh, M. M., Alzoubi, K. H., Ahmed, W. S., & Magaji, A. S. (2019). In vitro comparison of antibacterial and antibiofilm activities of selected fluoroquinolones against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Pathogen, 8, 12. https://doi.org/10.3390/pathogens8010012.
      Matviiuk, T., Madacki, J., Mori, G., Orena, B. S., Menendez, C., Kysil, A., André-Barrès, C., Rodriguez, F., Korduláková, J., Mallet-Ladeira, S., Voitenko, Z., Pasca, M. R., Lherbet, C., & Baltas, M. (2016). Pyrrolidinone and pyrrolidine derivatives: Evaluation as inhibitors of InhA and Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 123, 462-475. https://doi.org/10.1016/j.ejmech.2016.07.028.
      Nayak, S. G., Poojary, B., & Kamat, V. (2020). Novel pyrazole-clubbed thiophene derivatives via Gewald synthesis as antibacterial and anti-inflammatory agents. Arch Pharm (Weinheim), 353, 2000103. https://doi.org/10.1002/ardp.202000103.
      Nielubowicz, G. R., & Mobley, H. L. T. (2010). Host-pathogen interactions in urinary tract infection. Nature Reviews. Urology, 7, 430-441. https://doi.org/10.1038/nrurol.2010.101.
      Ouf, S. A., Gomha, S. M., Ewies, M. M., & Sharawy, I. A. A. (2018). Synthesis, characterization, and antifungal activity evaluation of some novel arylazothiazoles. Journal of Heterocyclic Chemistry, 55, 258-264. https://doi.org/10.1002/jhet.3040.
      Patil, S. A. (2012). Role of medicinal chemist in the modern drug discovery and development. Org. Chem. Curr. Ress, 2, e110.
      Pham, T. D. M., Ziora, Z. M., & Blaskovich, M. A. T. (2019). Quinolone antibiotics. Medchemcomm, 10, 1719-1739. https://doi.org/10.1039/c9md00120d.
      Ragab, A., Abusaif, M. S., Aboul-Magd, D. S., Wassel, M. M. S., Elhagali, G. A. M., & Ammar, Y. A. (2022). A new exploration toward adamantane derivatives as potential anti-MDR agents: Design, synthesis, antimicrobial, and radiosterilization activity as potential topoisomerase IV and DNA gyrase inhibitors. Drug Development Research, 83, 1305-1330. https://doi.org/10.1002/ddr.21960.
      Ragab, A., Ammar, Y. A., Ezzat, A., Mahmoud, A. M., Basseem, M., Mohamed, I., El-tabl, A. S., & Farag, R. S. (2022). ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Computers in Biology and Medicine, 145, 105473. https://doi.org/10.1016/j.compbiomed.2022.105473.
      Ragab, A., Elsisi, D. M., Abu Ali, O. A., Abusaif, M. S., Askar, A. A., Farag, A. A., & Ammar, Y. A. (2022). Design, synthesis of new novel quinoxalin-2(1H)-one derivatives incorporating hydrazone, hydrazine, and pyrazole moieties as antimicrobial potential with in-silico ADME and molecular docking simulation. Arabian Journal of Chemistry, 15, 103497. https://doi.org/10.1016/j.arabjc.2021.103497.
      Ragab, A., Fouad, S. A., Ali, O. A. A., Ahmed, E. M., Ali, A. M., Askar, A. A., & Ammar, Y. A. (2021). Sulfaguanidine hybrid with some new pyridine-2-one derivatives: Design, synthesis, and antimicrobial activity against multidrug-resistant bacteria as dual DNA gyrase and DHFR inhibitors. Antibiotics, 10, 162. https://doi.org/10.3390/antibiotics10020162.
      Rizk, H. F., El-Borai, M. A., Ragab, A., & Ibrahim, S. A. (2020). Design, synthesis, biological evaluation and molecular docking study based on novel fused pyrazolothiazole scaffold. Journal of the Iranian Chemical Society, 17, 2493-2505. https://doi.org/10.1007/s13738-020-01944-9.
      Rizk, H. F., El-Borai, M. A., Ragab, A., Ibrahim, S. A., & Sadek, M. E. (2021). A novel of azo-thiazole moiety alternative for benzidine-based pigments: design, synthesis, characterization, biological evaluation, and molecular docking study. Polycyclic Aromatic Compounds, 0, 1-23. https://doi.org/10.1080/10406638.2021.2015402.
      Saadon, K. E., Taha, N. M. H., Gameel, N. A. M., & Ahmed, A. M. E. (2022). Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. Journal of the Iranian Chemical Society, 19, 3899-3917. https://doi.org/10.1007/s13738-022-02575-y.
      Salem, M. A., Ragab, A., Askar, A. A., El-Khalafawy, A., & Makhlouf, A. H. (2020). One-pot synthesis and molecular docking of some new spiropyranindol-2-one derivatives as immunomodulatory agents and in vitro antimicrobial potential with DNA gyrase inhibitor. European Journal of Medicinal Chemistry, 188, 111977. https://doi.org/10.1016/j.ejmech.2019.111977.
      Salem, M. A., Ragab, A., El-Khalafawy, A., Makhlouf, A. H., Askar, A. A., & Ammar, Y. A. (2020). Design, synthesis, in vitro antimicrobial evaluation and molecular docking studies of indol-2-one tagged with morpholinosulfonyl moiety as DNA gyrase inhibitors. Bioorganic Chemistry, 96, 103619. https://doi.org/10.1016/j.bioorg.2020.103619.
      Sashidhara, K. V., Rao, K. B., Kushwaha, P., Modukuri, R. K., Singh, P., Soni, I., Shukla, P. K., Chopra, S., & Pasupuleti, M. (2015). Novel chalcone-thiazole hybrids as potent inhibitors of drug resistant Staphylococcus aureus. ACS Medicinal Chemistry Letters, 6, 809-813. https://doi.org/10.1021/acsmedchemlett.5b00169.
      Sayed, A. R., Gomha, S. M., Abd El-lateef, H. M., & Abolibda, T. Z. (2021). L-proline catalyzed green synthesis and anticancer evaluation of novel bioactive benzil bis-hydrazones under grinding technique. Green Chemistry Letters and Reviews, 14, 180-189. https://doi.org/10.1080/17518253.2021.1893392.
      Sharma, P. C., Sharma, D., Sharma, A., Saini, N., Goyal, R., Ola, M., Chawla, R., & Thakur, V. K. (2020). Hydrazone comprising compounds as promising anti-infective agents: Chemistry and structure-property relationship. Materials Today Chemistry, 18, 100349. https://doi.org/10.1016/j.mtchem.2020.100349.
      Sihra, N., Goodman, A., Zakri, R., Sahai, A., & Malde, S. (2018). Nonantibiotic prevention and management of recurrent urinary tract infection. Nature Reviews. Urology, 15, 750-776. https://doi.org/10.1038/s41585-018-0106-x.
      Stemp, G., Taylor, J. B., & Kennewell, P. D. (1994). Modern medicinal chemistry. Ellis Horwood (xi+ 290 pages).
      Tian, J., Ji, R., Wang, H., Li, S., & Zhang, G. (2022). Discovery of novel α-aminophosphonates with hydrazone as potential antiviral agents combined with active fragment and molecular docking. Front Chem, 10, 911453. https://doi.org/10.3389/fchem.2022.911453.
      Tsuji, B. T., Yang, J. C., Forrest, A., Kelchlin, P. A., & Smith, P. F. (2008). In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. The Journal of Antimicrobial Chemotherapy, 62, 156-160. https://doi.org/10.1093/jac/dkn133.
      USP 35. (2012). Chapter 1211: Sterilization and Sterility Assurance of Compendial Articles (pp. 863-867). United State Pharmacopoeia Conv.
      Wang, J. C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nature Reviews. Molecular Cell Biology, 3, 430-440. https://doi.org/10.1038/nrm831.
      Wassel, M. M. S., Ammar, Y. A., Elhag Ali, G. A. M., Belal, A., Mehany, A. B. M., & Ragab, A. (2021). Development of adamantane scaffold containing 1,3,4-thiadiazole derivatives: Design, synthesis, anti-proliferative activity and molecular docking study targeting EGFR. Bioorganic Chemistry, 110, 104794. https://doi.org/10.1016/j.bioorg.2021.104794.
      Wassel, M. M. S., Ragab, A., Elhag Ali, G. A. M., Mehany, A. B. M., & Ammar, Y. A. (2021). Novel adamantane-pyrazole and hydrazone hybridized: Design, synthesis, cytotoxic evaluation, SAR study and molecular docking simulation as carbonic anhydrase inhibitors. Journal of Molecular Structure, 1223, 128966 10.1016/j.molstruc.2020.128966.
      Wayne, P. A. (2018). M100: Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement (28th ed.). Clinical and Laboratory Standards Institute.
      Wayne, P. A. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI supplement M07 (11th ed.). Clinical and Laboratory Standards Institute.
    • Contributed Indexing:
      Keywords: ADMET; DNA gyrase and DNA topoisomerase IV; UTIs; hemolytic activity; molecular docking; quinolines; ɣ-radiation
    • Accession Number:
      EC 5.99.1.3 (DNA Gyrase)
      EC 5.99.1.- (DNA Topoisomerase IV)
      0 (Topoisomerase II Inhibitors)
      0 (Anti-Infective Agents)
      0 (Anti-Bacterial Agents)
    • Publication Date:
      Date Created: 20221028 Date Completed: 20230113 Latest Revision: 20230214
    • Publication Date:
      20230215
    • Accession Number:
      10.1111/cbdd.14154
    • Accession Number:
      36305722