Menu
×
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Adhesive assisted TiB 2 coating effects on friction stir welded joints.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Kundu AK;Kundu AK; Gupta MK; Gupta MK; Rajput NS; Rajput NS; Rathore R; Rathore R
- Source:
Scientific reports [Sci Rep] 2022 Oct 25; Vol. 12 (1), pp. 17894. Date of Electronic Publication: 2022 Oct 25.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
- Publication Information: Original Publication: London : Nature Publishing Group, copyright 2011-
- Abstract: Friction stir welding is a novel technique for joining ferrous and non-ferrous materials in a solid state. The groove fill techniques are most popular and generally used by researchers to dope reinforcement in the FSWed zone to improve the properties of joints. The main drawback of this technique is that a few amounts of reinforcement material come out from the groove during the fabrication of the joint. In the present work, the adhesive-assisted reinforcement technique was used to overcome this problem for the fabrication of particulates reinforced friction stirred weld joint. In the present work, the aluminum alloy plate edges were coated with a thin layer of TiB2. The coated and non-coated edge plates were joined using friction stir welding at the rotational speed of 1400 and 2240 rpm, and welding speed of 32 mm/min using a taper threaded pin tool. The tensile strength of coated edge plate welded joints was found highest in comparison to non-coated joints which was 39.74% superior. The percentage elongation of coated edge joint was observed about 1.5 times lower than the non-coated edge plate joint. The flexure strength of TiB2 reinforced coated edge joint was found about 1.5 times higher. However, the impact strength of coated edge plate was found nearly three times lower than the uncoated edge joints. The TiB2 coated edge joints reveal 22.75% higher hardness than the non-coated edge plate joints welded at the rotational speed of 2240.
(© 2022. The Author(s).) - References: Li, K., Jarrar, F., Sheikh-Ahmad, J. & Ozturk, F. Using coupled Eulerian Lagrangian formulation for accurate modeling of the friction stir welding process. Procedia Eng. 207, 574–579 (2017). (PMID: 10.1016/j.proeng.2017.10.1023)
Gibsona, B. T. et al. Friction stir welding: Process, automation and control. J. Manuf. Process. 16(1), 56–73 (2015). (PMID: 10.1016/j.jmapro.2013.04.002)
Gupta, M. K. Friction stir process: A green fabrication technique for surface composites: A review paper. SN Appl. Sci. 2(4), 1–14. https://doi.org/10.1007/s42452-020-2330-2 (2020). (PMID: 10.1007/s42452-020-2330-2)
Lohwasser, D. & Chen, Z. Friction Stir Welding from Basics to Applications (Wood Head Publishing Limited, 2010). (PMID: 10.1533/9781845697716)
Mishra, R. S. & Ma, Z. Y. Friction stir welding and processing. Mater. Sci. Eng. 50(1–2), 1–78 (2005). (PMID: 10.1016/j.mser.2005.07.001)
Tan, C. W., Jiang, Z. G., Chen, Y. B. & Chen, X. Y. Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding. Mater. Des. 51, 466–473 (2013). (PMID: 10.1016/j.matdes.2013.04.056)
Esmaeili, A., Besharati, G., Zareie, M. K. & Rajani, H. R. Experimental investigation of material flow and welding defects in friction stir welding of aluminum to brass. Mater. Manuf. Process. 27(12), 1402–1408 (2012). (PMID: 10.1080/10426914.2012.663239)
Bisadi, H., Rasaee, S. & Fotoohi, Y. Studying of tool rotation speed on mechanical properties of copper–Al5083 butt joint welded by friction stir welding. Proc. Inst. Mech. Eng. Part B 229, 1731–1741 (2014).
Fotouhi, Y., Rasaee, S., Askari, A. & Bisadi, H. Effect of transverse speed of the tool on microstructure and mechanical properties in dissimilar butt friction stir welding of Al5083–copper sheets. Eng. Solid Mech. 2(3), 239–246 (2014). (PMID: 10.5267/j.esm.2014.3.001)
Gupta, M. K. Effects of tool profile on mechanical properties of aluminium alloy Al 1120 friction stir welds. J. Adhes. Sci. Technol. 34(18), 2000–2010. https://doi.org/10.1080/01694243.2020.1749448 (2020). (PMID: 10.1080/01694243.2020.1749448)
Serio, L. M., Palumbo, D. G., Filippis, U. D. & Ludovico, A. D. Monitoring of the friction stir welding process by means of thermography. Nondestruct. Test. Eval. 31(4), 371–383. https://doi.org/10.1080/10589759.2015.1121266 (2016). (PMID: 10.1080/10589759.2015.1121266)
Hamid, M., Mohsen, B., Alireza, F. T., Saeed, Z. R. & Morteza, S. E. Dual-rotation speed friction stir welding: Experimentation and modeling. Mater. Manuf. Process. 30(9), 1109–1114. https://doi.org/10.1080/10426914.2014.973578 (2015). (PMID: 10.1080/10426914.2014.973578)
Akinlabi, E. T. & Akinlabi, S. A. Effect of heat input on the properties of dissimilar friction stir welds of aluminium and copper. Am. J. Mater. Sci. 2(5), 147–152 (2012). (PMID: 10.5923/j.materials.20120205.03)
Chengcong, Z. & Amir, A. S. Measurement of residual stresses in dissimilar friction stir-welded aluminium and copper plates using the contour method. Sci. Technol. Weld. Joining 23(5), 394–399. https://doi.org/10.1080/13621718.2017.1402846 (2018). (PMID: 10.1080/13621718.2017.1402846)
Hou, Z., Sheikh-Ahmad, J., Jarrar, F. & Ozturk, F. Residual stresses in dissimilar friction stir welding of AA2024 and AZ31: Experimental and numerical study. J. Manuf. Sci. Eng. 140(5), 051015 (2018). (PMID: 10.1115/1.4039074)
Buchibabu, V., Reddy, G. M., Kulkarni, D. V. & De, A. Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate. J. Mater. Eng. Perform. 25(3), 1163–1171 (2016). (PMID: 10.1007/s11665-016-1924-8)
Gonçalo, S. et al. Microstructure and fatigue properties of friction stir welded high strength steel plates. Sci. Technol. Weld. Join. 23(5), 380–386 (2018). (PMID: 10.1080/13621718.2017.1399574)
Ratna, S. B. & Pradeep, K. R. G. Corrosion behavior of friction stir welded AZ31B Mg alloy-Al6063 alloy joint. Cogent Eng. 3(1), 1145565. https://doi.org/10.1080/23311916.2016.1145565 (2016). (PMID: 10.1080/23311916.2016.1145565)
Bagheri, B., Abdollahzadeh, A., Sharifi, F., Abbasi, M. & Moghaddam, A. O. Recent development in friction stir processing of aluminum alloys: Microstructure evolution, mechanical properties, wear and corrosion behaviors. Proc. Inst. Mech. Eng. Part E. https://doi.org/10.1177/09544089211058007 (2021). (PMID: 10.1177/09544089211058007)
Abdollahzadeh, A., Bagheri, B., Abbasi, M., Sharifi, F. & Moghaddam, A. O. Mechanical, wear and corrosion behaviors of AZ91/SiC composite layer fabricated by friction stir vibration processing. Surf. Topogr. 9(3), 035038. https://doi.org/10.1088/2051-672X/ac2176 (2021). (PMID: 10.1088/2051-672X/ac2176)
Baghdadi, A. H., Rajabi, A., Selamat, N. F. M., Sajuri, Z. & Omar, M. Z. Effect of post-weld heat treatment on the mechanical behavior and dislocation density of friction stir welded Al6061. Mater. Sci. Eng. A754, 728–734 (2019). (PMID: 10.1016/j.msea.2019.03.017)
Kumar, K. A., Murigendrappa, S. & Kumar, H. A bottom-up optimization approach for friction stir welding parameters of dissimilar AA2024-T351 and AA7075-T651 alloys. J. Mater. Eng. Perform. 26(7), 3347–3367 (2017). (PMID: 10.1007/s11665-017-2746-z)
Park, S. W., Yoon, T. J. & Kang, C. Y. Effects of the shoulder diameter and weld pitch on the tensile shear load in friction stir welding of AA6111/AA5023 aluminum alloys. J. Mater. Proc. Technol. 241, 112–119 (2017). (PMID: 10.1016/j.jmatprotec.2016.11.007)
Heidarzadeh, A. et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater. Sci. 117, 100752 (2021). (PMID: 10.1016/j.pmatsci.2020.100752)
Cavaliere, P., Cabibbo, M., Panella, F. & Squilace, A. Al-Li plates joined by friction stir welding: mechanical and microstructural behavior. Mater. Des. 30(9), 3622–3631 (2009). (PMID: 10.1016/j.matdes.2009.02.021)
Bagheri, B., Abbasi, M. & Dadaei, M. Mechanical behavior and microstructure of AA6061-T6 joints made by friction stir vibration welding. J. Mater. Eng. Perform. 29(2), 1165–1175. https://doi.org/10.1007/s11665-020-04639-7 (2020). (PMID: 10.1007/s11665-020-04639-7)
Abbasi, M., Givi, M. & Bagheri, B. Application of vibration to enhance efficiency of friction stir processing. Trans. Nonferrous Metals Soc. China 29(7), 1393–1400. https://doi.org/10.1016/S1003-6326(19)65046-6 (2019). (PMID: 10.1016/S1003-6326(19)65046-6)
Velichko, O. V., Ivanov, S. Y., Karkhin, V. A., Lopota, V. A. & Makhin, I. D. Friction stir welding of thick plates of Al–Mg–Sc alloy. Weld. Int. 30(8), 630–634. https://doi.org/10.1080/09507116.2016.1140418 (2016). (PMID: 10.1080/09507116.2016.1140418)
Kush, P. M. & Vishvesh, J. B. Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum. Mater. Manuf. Process. 31(3), 255–263. https://doi.org/10.1080/10426914.2014.994754 (2016). (PMID: 10.1080/10426914.2014.994754)
Elyasi, M., Aghajan, D. H. & Hosseinzadeh, M. Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium. Proc. Inst. Mech. Eng. Part B 230(7), 1234–1241 (2016). (PMID: 10.1177/0954405416645986)
Acharya, U., Roy, B. S. & Saha, S. C. On the role of tool tilt angle on friction stir welding of aluminum matrix composites. Silicon 13, 79–89. https://doi.org/10.1007/s12633-020-00405-5 (2020). (PMID: 10.1007/s12633-020-00405-5)
Arbegast, W. J. A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr. Mater. 58(5), 372–376 (2008). (PMID: 10.1016/j.scriptamat.2007.10.031)
Ghada, M. F., Essa, H. M. Z., Tamer, S. M. & Tarek, A. K. Microstructure examination and microhardness of friction stir welded joint of (AA7020-O) after PWHT. HBRC J. 14(1), 22–28 (2018). (PMID: 10.1016/j.hbrcj.2015.05.002)
Ganesh, P. & Senthil Kumar, V. S. Superplastic forming of friction stir welded AA6061-T6 alloy sheet with various tool rotation speed. Mater. Manuf. Process. 30(9), 1080–1089 (2015). (PMID: 10.1080/10426914.2013.811731)
Saeidi, M., Barmouz, M. & Givi, M. K. B. Investigation on AA5083/AA7075+ Al2O3 joint fabricated by friction stir welding: Characterizing microstructure, corrosion and toughness behavior. Mater. Res. 18(6), 1156–1162 (2015). (PMID: 10.1590/1516-1439.357714)
Kumar, N. & Patel, V. K. Effect of SiC/Si3N4 micro-reinforcement on mechanical and wear properties of friction stir welded AA6061-T6 aluminum alloy. SN Appl. Sci. 2, 1572. https://doi.org/10.1007/s42452-020-03381-y (2020). (PMID: 10.1007/s42452-020-03381-y)
Dragatogiannis, D. A. et al. Dissimilar friction stir welding between 5083 and 6082 Al alloys reinforced with TiC nanoparticles. Mater. Manuf. Process. 31(16), 2101–2114 (2016). (PMID: 10.1080/10426914.2015.1103856)
Huang, H. Y., Kuo, I. C. & Zhang, C. W. Friction-stir welding of aluminum alloy with an iron-based metal as reinforcing material. Sci. Eng. Compos. Mater. 25(1), 123–131 (2018). (PMID: 10.1515/secm-2016-0065)
Singh, T., Tiwari, S. K. & Shukla, D. K. Effects of Al2 O3 nanoparticles volume fractions on microstructural and mechanical characteristics of friction stir welded nanocomposites. Nanocomposites 6(2), 76–84 (2020). (PMID: 10.1080/20550324.2020.1776504)
Pantelis, D. I. et al. Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles. Mater. Manuf. Process. 31(3), 264–274. https://doi.org/10.1080/10426914.2015.1019095 (2016). (PMID: 10.1080/10426914.2015.1019095)
Pasha, M. A., Reddy, P. R., Laxminarayana, P. & Khan, I. A. SiC and Al2O3 reinforced friction stir welded joint of aluminium alloy 6061. In Strengthening and Joining by Plastic Deformation 163–182 (Springer, 2019). (PMID: 10.1007/978-981-13-0378-4_7)
Huang, H. Y., Yang, C. W. & Deng, W. Y. Incorporating oxygen-free copper to improve the microstructure and mechanical properties of friction-stir-welded joints for aluminum alloys. Sci. Eng. Compos. Mater. 25(6), 1219–1228 (2018). (PMID: 10.1515/secm-2016-0241) - Publication Date: Date Created: 20221025 Latest Revision: 20221030
- Publication Date: 20221213
- Accession Number: PMC9596410
- Accession Number: 10.1038/s41598-022-21281-6
- Accession Number: 36284119
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.