Allergic airway inflammation delays glioblastoma progression and reinvigorates systemic and local immunity in mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: Denmark NLM ID: 7804028 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1398-9995 (Electronic) Linking ISSN: 01054538 NLM ISO Abbreviation: Allergy Subsets: MEDLINE
    • Publication Information:
      Publication: Copenhagen : Wiley-Blackwell
      Original Publication: Copenhagen, Munksgaard.
    • Subject Terms:
    • Abstract:
      Background: Numerous patient-based studies have highlighted the protective role of immunoglobulin E-mediated allergic diseases on glioblastoma (GBM) susceptibility and prognosis. However, the mechanisms behind this observation remain elusive. Our objective was to establish a preclinical model able to recapitulate this phenomenon and investigate the role of immunity underlying such protection.
      Methods: An immunocompetent mouse model of allergic airway inflammation (AAI) was initiated before intracranial implantation of mouse GBM cells (GL261). RAG1-KO mice served to assess tumor growth in a model deficient for adaptive immunity. Tumor development was monitored by MRI. Microglia were isolated for functional analyses and RNA-sequencing. Peripheral as well as tumor-associated immune cells were characterized by flow cytometry. The impact of allergy-related microglial genes on patient survival was analyzed by Cox regression using publicly available datasets.
      Results: We found that allergy establishment in mice delayed tumor engraftment in the brain and reduced tumor growth resulting in increased mouse survival. AAI induced a transcriptional reprogramming of microglia towards a pro-inflammatory-like state, uncovering a microglia gene signature, which correlated with limited local immunosuppression in glioma patients. AAI increased effector memory T-cells in the circulation as well as tumor-infiltrating CD4 + T-cells. The survival benefit conferred by AAI was lost in mice devoid of adaptive immunity.
      Conclusion: Our results demonstrate that AAI limits both tumor take and progression in mice, providing a preclinical model to study the impact of allergy on GBM susceptibility and prognosis, respectively. We identify a potentiation of local and adaptive systemic immunity, suggesting a reciprocal crosstalk that orchestrates allergy-induced immune protection against GBM.
      (© 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.)
    • References:
      Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803-820. doi:10.1007/s00401-016-1545-1.
      Amirian ES, Zhou R, Wrensch MR, et al. Approaching a scientific consensus on the association between allergies and glioma risk: a report from the glioma international case-control study. Cancer Epidemiol Biomarkers Prev. 2016;25(2):282-290. doi:10.1158/1055-9965.EPI-15-0847.
      Wrensch M, Wiencke JK, Wiemels J, et al. Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival. Cancer Res. 2006;66(8):4531-4541. doi:10.1158/0008-5472.CAN-05-4032.
      Lehrer S, Rheinstein PH, Rosenzweig KE. Allergy may confer better survival on patients with gliomas. Clin Neurol Neurosurg. 2019;177:63-67. doi:10.1016/j.clineuro.2018.12.021.
      Alexiou GA, Kallinteri A, Nita E, Zagorianakou P, Levidiotou S, Voulgaris S. Serum IgE levels in patients with intracranial tumors. Neuroimmunol Neuroinflamm. 2015;2:15-17. doi:10.4103/2347-8659.149398.
      Costanza M, Finocchiaro G. Allergic signs in glioma pathology: current knowledge and future perspectives. Cancers. 2019;11(3):404. doi:10.3390/cancers11030404.
      Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity. 2019;51(2):411-412. doi:10.1016/j.immuni.2019.08.004.
      Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31(3):326-341. doi:10.1016/j.ccell.2017.02.009.
      Pires-Afonso Y, Niclou SP, Michelucci A. Revealing and harnessing tumour-associated microglia/macrophage heterogeneity in glioblastoma. Int J Mol Sci. 2020;21(3):689. doi:10.3390/ijms21030689.
      Chongsathidkiet P, Jackson C, Koyama S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24(9):1459-1468. doi:10.1038/s41591-018-0135-2.
      Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 2020;20(1):12-25. doi:10.1038/s41568-019-0224-7.
      Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25(3):470-476. doi:10.1038/s41591-018-0339-5.
      Ferastraoaru D, Bax HJ, Bergmann C, et al. AllergoOncology: ultra-low IgE, a potential novel biomarker in cancer-a position paper of the European academy of allergy and clinical immunology (EAACI). Clin Transl Allergy. 2020;10:32. doi:10.1186/s13601-020-00335-w.
      Bergmann C, Poli A, Agache I, et al. AllergoOncology: danger signals in allergology and oncology. A European academy of allergy and clinical immunology (EAACI) position paper. Allergy. 2022;77:2594-2617. doi:10.1111/all.15255.
      Ostrom QT, Edelson J, Byun J, et al. Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro Oncol. 2021;23:1304-1314. doi:10.1093/neuonc/noab072.
      Chatterjee J, Sanapala S, Cobb O, et al. Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat Commun. 2021;12(1):7122. doi:10.1038/s41467-021-27455-6.
      Mauffray M, Domingues O, Hentges F, Zimmer J, Hanau D, Michel T. Neurturin influences inflammatory responses and airway remodeling in different mouse asthma models. Journal of Immunology. 2015;194(4):1423-1433. doi:10.4049/jimmunol.1402496.
      Oudin A, Baus V, Barthelemy V, et al. Protocol for derivation of organoids and patient-derived orthotopic xenografts from glioma patient tumors. STAR Protoc. 2021;2(2):100534. doi:10.1016/j.xpro.2021.100534.
      Poli A, Wang J, Domingues O, et al. Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget. 2013;4(9):1527-1546.
      Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol. 2017;133(2):263-282. doi:10.1007/s00401-017-1671-4.
      Corsico AG, De Amici M, Ronzoni V, et al. Allergen-specific immunoglobulin E and allergic rhinitis severity. Allergy Rhinol. 2017;8(1):1-4. doi:10.2500/ar.2017.8.0187.
      Friedrich M, Sankowski R, Bunse L, et al. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nature Cancer. 2021;2:723-740. doi:10.1038/s43018-021-00201-z.
      Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018-1027. doi:10.1038/nm.4397.
      Sousa C, Golebiewska A, Poovathingal SK, et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep. 2018;19:e46171. doi:10.15252/embr.201846171.
      Rodriguez RM, Suarez-Alvarez B, Lopez-Larrea C. Therapeutic epigenetic reprogramming of trained immunity in myeloid cells. Trends Immunol. 2019;40(1):66-80. doi:10.1016/j.it.2018.11.006.
      Quail DF, Bowman RL, Akkari L, et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science. 2016;352(6288):aad3018. doi:10.1126/science.aad3018.
      Wesolowska A, Kwiatkowska A, Slomnicki L, et al. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene. 2008;27(7):918-930. doi:10.1038/sj.onc.1210683.
      Szulzewsky F, Pelz A, Feng X, et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One. 2015;10(2):e0116644. doi:10.1371/journal.pone.0116644.
      Han CJ, Zheng JY, Sun L, et al. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-kappaB pathway. Acta Pharmacol Sin. 2019;40(10):1292-1302. doi:10.1038/s41401-019-0225-9.
      Otvos B, Alban TJ, Grabowski MM, et al. Preclinical modeling of surgery and steroid therapy for glioblastoma reveals changes in immunophenotype that are associated with tumor growth and outcome. Clin Cancer Res. 2021;27(7):2038-2049. doi:10.1158/1078-0432.CCR-20-3262.
      Jaman E, Zhang X, Sandlesh P, et al. History of atopy confers improved outcomes in IDH mutant and wildtype lower grade gliomas. J Neurooncol. 2021;155(2):133-141. doi:10.1007/s11060-021-03854-z.
      Ott M, Prins RM, Heimberger AB. The immune landscape of common CNS malignancies: implications for immunotherapy. Nat Rev Clin Oncol. 2021;18:729-744. doi:10.1038/s41571-021-00518-9.
      Arrieta VA, Chen AX, Kane JR, et al. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nat Cancer. 2021;2(12):1372-1386. doi:10.1038/s43018-021-00260-2.
      Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42, e6-56. doi:10.1016/j.ccell.2017.06.003.
      Khalsa JK, Cheng N, Keegan J, et al. Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types. Nat Commun. 2020;11(1):3912. doi:10.1038/s41467-020-17704-5.
      Klein B, Mrowetz H, Thalhamer J, Scheiblhofer S, Weiss R, Aigner L. Allergy enhances neurogenesis and modulates microglial activation in the hippocampus. Front Cell Neurosci. 2016;10:169. doi:10.3389/fncel.2016.00169.
      Yamasaki R, Fujii T, Wang B, et al. Allergic inflammation leads to neuropathic pain via glial cell activation. J Neurosci. 2016;36(47):11929-11945. doi:10.1523/JNEUROSCI.1981-16.2016.
      Peng X, Madany AM, Jang JC, et al. Continuous inhalation exposure to fungal allergen particulates induces lung inflammation while reducing innate immune molecule expression in the brainstem. ASN Neuro. 2018;10:1759091418782304. doi:10.1177/1759091418782304.
      Vogel Ciernia A, Careaga M, LaSalle JM, Ashwood P. Microglia from offspring of dams with allergic asthma exhibit epigenomic alterations in genes dysregulated in autism. Glia. 2018;66(3):505-521. doi:10.1002/glia.23261.
      Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987-991. doi:10.1038/nn.4338.
      Zeiner PS, Preusse C, Golebiewska A, et al. Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol. 2019;29(4):513-529. doi:10.1111/bpa.12690.
      Benbenishty A, Gadrich M, Cottarelli A, et al. Prophylactic TLR9 stimulation reduces brain metastasis through microglia activation. PLoS Biol. 2019;17(3):e2006859. doi:10.1371/journal.pbio.2006859.
      Hutter G, Theruvath J, Graef CM, et al. Microglia are effector cells of CD47-SIRPalpha antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci USA. 2019;116(3):997-1006. doi:10.1073/pnas.1721434116.
      Pandya H, Shen MJ, Ichikawa DM, et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci. 2017;20(5):753-759. doi:10.1038/nn.4534.
      Garofalo S, Porzia A, Mainiero F, et al. Environmental stimuli shape microglial plasticity in glioma. Elife. 2017;6:e33415. doi:10.7554/eLife.33415.
      Abdelfattah N, Kumar P, Wang C, et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat Commun. 2022;13(1):767. doi:10.1038/s41467-022-28372-y.
      Kmiecik J, Gras Navarro A, Poli A, Planaguma JP, Zimmer J, Chekenya M. Combining NK cells and mAb9.2.27 to combat NG2-dependent and anti-inflammatory signals in glioblastoma. Oncoimmunology. 2014;3(1):e27185. doi:10.4161/onci.27185.
      Pires-Afonso Y, Muller A, Grzyb K, et al. Elucidating tumour-associated microglia/macrophage diversity along glioblastoma progression and under ACOD1 deficiency. Mol Oncol. 2022;16(17):3167-3191. doi:10.1002/1878-0261.13287.
      Eoli M, Corbetta C, Anghileri E, et al. Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy. Neurooncol Adv. 2019;1(1):vdz022. doi:10.1093/noajnl/vdz022.
      Mock A, Warta R, Geisenberger C, et al. Printed peptide arrays identify prognostic TNC serumantibodies in glioblastoma patients. Oncotarget. 2015;6(15):13579-13590. doi:10.18632/oncotarget.3791.
      Pellizzari G, Hoskin C, Crescioli S, et al. IgE re-programs alternatively-activated human macrophages towards pro-inflammatory anti-tumoural states. EBioMedicine. 2019;43:67-81. doi:10.1016/j.ebiom.2019.03.080.
      Josephs DH, Bax HJ, Dodev T, et al. Anti-folate receptor-alpha IgE but not IgG recruits macrophages to attack tumors via TNFalpha/MCP-1 signaling. Cancer Res. 2017;77(5):1127-1141. doi:10.1158/0008-5472.CAN-16-1829.
      Nakamura M, Souri EA, Osborn G, et al. IgE activates monocytes from cancer patients to acquire a pro-inflammatory phenotype. Cancers. 2020;12(11):3376. doi:10.3390/cancers12113376.
      Jordakieva G, Bianchini R, Reichhold D, et al. IgG4 induces tolerogenic M2-like macrophages and correlates with disease progression in colon cancer. Oncoimmunology. 2021;10(1):1880687. doi:10.1080/2162402X.2021.1880687.
      Bianchini R, Roth-Walter F, Ohradanova-Repic A, et al. IgG4 drives M2a macrophages to a regulatory M2b-like phenotype: potential implication in immune tolerance. Allergy. 2019;74(3):483-494. doi:10.1111/all.13635.
      Okun E, Mattson MP, Arumugam TV. Involvement of fc receptors in disorders of the central nervous system. Neuromolecular Med. 2010;12(2):164-178. doi:10.1007/s12017-009-8099-5.
      Josephs DH, Nakamura M, Bax HJ, et al. An immunologically relevant rodent model demonstrates safety of therapy using a tumour-specific IgE. Allergy. 2018;73(12):2328-2341. doi:10.1111/all.13455.
      Hirano M, Davis RS, Fine WD, et al. IgEb immune complexes activate macrophages through FcgammaRIV binding. Nat Immunol. 2007;8(7):762-771. doi:10.1038/ni1477.
      Mancardi DA, Iannascoli B, Hoos S, England P, Daeron M, Bruhns P. FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation. J Clin Invest. 2008;118(11):3738-3750. doi:10.1172/JCI36452.
    • Contributed Indexing:
      Keywords: T-lymphocytes; glioma-induced immunosuppression; immunoglobulin-E; microglia; tumor microenvironment
    • Publication Date:
      Date Created: 20221010 Date Completed: 20230306 Latest Revision: 20230309
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/all.15545
    • Accession Number:
      36210648