Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS-CoV-2 virus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101234999 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2299-5684 (Electronic) Linking ISSN: 17341140 NLM ISO Abbreviation: Pharmacol Rep Subsets: MEDLINE
    • Publication Information:
      Publication: 2020- : Cham, Switzerland : Springer International Publishing
      Original Publication: Kraków, Poland : Institute of Pharmacology, Polish Academy of Sciences, c2005-
    • Subject Terms:
    • Abstract:
      The SARS-CoV-2 outbreak has posed a plethora of problems for the global healthcare system and socioeconomic burden. Despite valiant efforts to contain the COVID-19 outbreak, the situation has deteriorated to the point that there are no viable preventive therapies to treat this disease. The case count has skyrocketed globally due to the newly evolved variants. Despite vaccination drives, the re-occurrence of recent pandemic waves has reinforced the importance of innovation/utilization of immune-booster to achieve appropriate long-term vaccine protection. Plant-derived immuno-adjuvants, which have multifaceted functions, can impede infections by boosting the immune system. Many previous studies have shown that formulation of vaccines using plant-derived adjuvant results in long-lasting immunity may overcome the natural tendency of coronavirus immunity to wane quickly. Plant polysaccharides, glycosides, and glycoprotein extracts have reportedly been utilized as enticing adjuvants in experimental vaccines, such as Advax, Matrix-M, and Mistletoe lectin, which have been shown to be highly immunogenic and safe. When employed in vaccine formulation, Advax and Matrix-M generate long-lasting antibodies, a balanced robust Th1/Th2 cytokine profile, and the stimulation of cytotoxic T cells. Thus, the use of adjuvants derived from plants may increase the effectiveness of vaccines, resulting in the proper immunological response required to combat COVID-19. A few have been widely used in epidemic outbreaks, including SARS and H1N1 influenza, and their use could also improve the efficacy of COVID-19 vaccines. In this review, the immunological adjuvant properties of plant compounds as well as their potential application in anti-COVID-19 therapy are thoroughly discussed.
      (© 2022. The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences.)
    • References:
      Kumar A, Sharma A, Tirpude NV, Thakur S, Kumar S. Combating the progression of novel coronavirus SARS-CoV-2 infectious Disease: current state and future prospects in molecular diagnostic and drug discovery. Curr Mol Med. 2021. https://doi.org/10.2174/1566524021666210803154250 . (PMID: 10.2174/1566524021666210803154250)
      Giovane RA, Rezai S, Cleland E, Henderson CE. Current pharmacological modalities for management of novel coronavirus disease 2019 (COVID-19) and the rationale for their utilization: a review. Rev Med Virol. 2020;30(5): e2136. https://doi.org/10.1002/rmv.2136 . (PMID: 10.1002/rmv.2136)
      Valle C, Martin B, Touret F, Shannon A, Canard B, Guillemot J, Coutard B, Decroly E. Drugs against SARS-CoV-2: what do we know about their mode of action? Rev Med Virol. 2020;30(6):1–10. https://doi.org/10.1002/rmv.2143 . (PMID: 10.1002/rmv.2143)
      Suganya S, Divya S, Parani M. Severe acute respiratory syndrome-coronavirus-2: current advances in therapeutic targets and drug development. Rev Med Virol. 2021;31(3): e2174. https://doi.org/10.1002/rmv.2174 . (PMID: 10.1002/rmv.2174)
      Kumar A, Sharma A, Tirpude NV, Sharma S, Padwad YS, Kumar S. Pharmaco-immunomodulatory interventions for averting cytokine storm-linked disease severity in SARS-CoV-2 infection. Inflammopharmacology. 2022;30(1):23–49. https://doi.org/10.1007/s10787-021-00903-x . (PMID: 10.1007/s10787-021-00903-x)
      Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285 . (PMID: 10.1021/acs.jnatprod.9b01285)
      Beutler JA. Natural products as tools for discovering new cancer targets. In: Koehn F, editor. Natural products and cancer drug discovery. Cancer drug discovery and development. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-4654-5_9 . (PMID: 10.1007/978-1-4614-4654-5_9)
      Owen L, Laird K, Shivkumar M. Antiviral plant-derived natural products to combat RNA viruses: targets throughout the viral life cycle. Lett Appl Microbiol. 2021. https://doi.org/10.1111/lam.13637 . (PMID: 10.1111/lam.13637)
      Ang L, Lee HW, Choi JY, Zhang J, Lee MS. Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integr Med Res. 2020;9: 100407. https://doi.org/10.1016/j.imr.2020.100407 . (PMID: 10.1016/j.imr.2020.100407)
      Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, et al. Herbal immune-boosters: substantial warriors of pandemic Covid-19 battle. Phytomedicine. 2021;85: 153361. https://doi.org/10.1016/j.phymed.2020.153361 . (PMID: 10.1016/j.phymed.2020.153361)
      Pulendran BS, Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20:454–75. https://doi.org/10.1038/s41573-021-00163-y . (PMID: 10.1038/s41573-021-00163-y)
      Sander VA, Corigliano MG, Clemente M. Promising plant-derived adjuvants in the development of coccidial vaccines. Front Vet Sci. 2019;6:20. https://doi.org/10.3389/fvets.2019.00020 . (PMID: 10.3389/fvets.2019.00020)
      Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–80. https://doi.org/10.1016/j.cell.2021.01.007 . (PMID: 10.1016/j.cell.2021.01.007)
      Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996-1012.e19. https://doi.org/10.1016/j.cell.2020.09.038 . (PMID: 10.1016/j.cell.2020.09.038)
      Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology. 2005;334:160–5. https://doi.org/10.1016/j.virol.2005.01.042 . (PMID: 10.1016/j.virol.2005.01.042)
      Honda-Okubo Y, Saade F, Petrovsky N. Advax™, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine. 2012;30:5373–81. https://doi.org/10.1016/j.vaccine.2012.06.021 . (PMID: 10.1016/j.vaccine.2012.06.021)
      Honda-Okubo Y, Barnard D, Ong CH, Peng BH, et al. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89:2995–3007. https://doi.org/10.1128/jvi.02980-14 . (PMID: 10.1128/jvi.02980-14)
      Petroski N. Advax adjuvant: a potent and safe immunopotentiator composed of delta inulin. In: Immunopotentiators in modern vaccines. 2nd ed. New York: Academic Press; 2017. p. 199–210. https://doi.org/10.1016/B978-0-12-804019-5.00010-4 . (PMID: 10.1016/B978-0-12-804019-5.00010-4)
      Lacaille-Dubois MA. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: a review. Phytomedicine. 2019;60: 152905. https://doi.org/10.1016/j.phymed.2019.152905 . (PMID: 10.1016/j.phymed.2019.152905)
      Shinde V, Cai R, Plested J, Cho I, Fiske J, Pham X, et al. Induction of cross-reactive hemagglutination inhibiting antibody and polyfunctional CD4+ T-cell responses by a recombinant matrix-M-adjuvanted hemagglutinin nanoparticle influenza vaccine. Clin Infect Dis. 2021;73(11):e4278–87. https://doi.org/10.1093/cid/ciaa1673 . (PMID: 10.1093/cid/ciaa1673)
      Bengtsson KL, Song H, Stertman L, Liu Y, Flyer DC, Massare MJ, et al. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine. 2016;34:1927–35. (PMID: 10.1016/j.vaccine.2016.02.033)
      Fries L, Cho I, Krähling V, Fehling SK, Strecker T, Becker S, et al. Randomized, blinded, dose-ranging trial of an Ebola virus glycoprotein nanoparticle vaccine with Matrix-M adjuvant in healthy adults. J Infect Dis. 2020;222:572–82. (PMID: 10.1093/infdis/jiz518)
      Shinde V, Cho I, Plested JS, Agrawal S, Fiske J, Cai R, et al. Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. Lancet Infect Dis. 2022;22(1):73–84. https://doi.org/10.1016/S1473-3099(21)00192-4 . (PMID: 10.1016/S1473-3099(21)00192-4)
      Pedersen GK, Sjursen H, Nøstbakken JK, Jul-Larsen Å, Hoschler K, Cox RJ. Matrix M(TM) adjuvanted virosomal H5N1 vaccine induces balanced Th1/Th2 CD4(+) T cell responses in man. Hum Vaccines Immunother. 2014;10:2408–16. (PMID: 10.4161/hv.29583)
      Madhun AS, Haaheim LR, Nilsen MV, Cox RJ. Intramuscular Matrix-M-adjuvanted virosomal H5N1 vaccine induces high frequencies of multifunctional Th1 CD4+ cells and strong antibody responses in mice. Vaccine. 2009;27:7367–76. (PMID: 10.1016/j.vaccine.2009.09.044)
      Lavelle EC, Grant G, Pusztai A, Pfüller U, Leavy O, McNeela E, et al. Mistletoe lectins enhance immune responses to intranasally co-administered herpes simplex virus glycoprotein D2. Immunology. 2002;107(2):268–74. https://doi.org/10.1046/j.1365-2567.2002.01492.x . (PMID: 10.1046/j.1365-2567.2002.01492.x)
      Song SK, Moldoveanu Z, Nguyen HH, Kim EH, Choi KY, Kim JB, Mestecky J. Intranasal immunization with influenza virus and Korean mistletoe lectin C (KML-C) induces heterosubtypic immunity in mice. Vaccine. 2007;25:6359–66. (PMID: 10.1016/j.vaccine.2007.06.030)
      Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, et al. Adjuvants for coronavirus vaccines. Front Immunol. 2020;11: 589833. https://doi.org/10.3389/fimmu.2020.589833 . (PMID: 10.3389/fimmu.2020.589833)
      Vogel FR. Adjuvants in perspective. Dev Biol Stand. 1998;92:241–8.
      Afinjuomo F, Barclay TG, Song Y, Parikh A, Petrovsky N, Garg S. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. React Funct Polym. 2019;134:104–11. https://doi.org/10.1016/j.reactfunctpolym.2018.10.014 . (PMID: 10.1016/j.reactfunctpolym.2018.10.014)
      Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32:3169–74. https://doi.org/10.1016/j.vaccine.2014.04.016 . (PMID: 10.1016/j.vaccine.2014.04.016)
      Lan J, Deng Y, Chen H, Lu G, Wang W, Guo X, et al. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PLoS ONE. 2014;9: e112602. https://doi.org/10.1371/journal.pone.0112602 . (PMID: 10.1371/journal.pone.0112602)
      Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Rapid development of an inactivated vaccine for SARS-CoV-2. Science. 2020;369:77–81. https://doi.org/10.1101/2020.04.17.046375 . (PMID: 10.1101/2020.04.17.046375)
      Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020;182:713-21.e9. https://doi.org/10.1016/j.cell.2020.06.008 . (PMID: 10.1016/j.cell.2020.06.008)
      Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020;586:572–7. https://doi.org/10.1038/s41586-020-2599-8 . (PMID: 10.1038/s41586-020-2599-8)
      Adjuvant alhydroxiquim-II to boost immune response of Covaxin. The Hindu 2020. https://www.thehindu.com/business/Industry/adjuvant-alhydroxiquim-ii-to-boost-immune-response-of-covaxin/article32771112.ece.
      Petrovsky N, Cooper PD. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine. 2015;33:5920–6. https://doi.org/10.1016/j.vaccine.2015.09.030 . (PMID: 10.1016/j.vaccine.2015.09.030)
      Wang L, Barclay T, Song Y, Joyce P, Sakala IG, Petrovsky N, Garg S. Investigation of the biodistribution, breakdown and excretion of delta inulin adjuvant. Vaccine. 2017;35:4382–8. https://doi.org/10.1016/j.vaccine.2017.06.045 . (PMID: 10.1016/j.vaccine.2017.06.045)
      Cooper PD. Vaccine adjuvants based on gamma inulin. Pharm Biotechnol. 1995;6:559–80. https://doi.org/10.1007/978-1-4615-1823-5_24 . (PMID: 10.1007/978-1-4615-1823-5_24)
      Silva DG, Cooper PD, Petrovsky N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immune responses. Immunol Cell Biol. 2004;82:611–6. https://doi.org/10.1111/j.1440-1711.2004.01290.x . (PMID: 10.1111/j.1440-1711.2004.01290.x)
      Cooper PD, Petrovsky N. Delta inulin: a novel, immunologically active, stable packing structure comprising -D-[2 -> 1] poly(fructo-furanosyl) -D-glucose polymers. Glycobiology. 2010;21:595–606. https://doi.org/10.1093/glycob/cwq201 . (PMID: 10.1093/glycob/cwq201)
      Woods N, Niwasabutra K, Acevedo R, Igoli J, Altwaijry NA, Tusiimire J, et al. Natural vaccine adjuvants and immunopotentiators derived from plants, fungi, marine organisms, and insects. In: Immunopotentiators modern vaccines. 2nd ed. Amsterdam: Elsevier; 2017. p. 211–29. https://doi.org/10.1016/b978-0-12-804019-5.00011-6 . (PMID: 10.1016/b978-0-12-804019-5.00011-6)
      Cooper P, Mccomb C, Stelle E. The adjuvanticity of Algammulin, a new vaccine adjuvant. Vaccine. 1991;9:408–15. https://doi.org/10.1016/0264-410x(91)90127-r . (PMID: 10.1016/0264-410x(91)90127-r)
      Cooper PD, Steele EJ. Algammulin, a new vaccine adjuvant comprising gamma inulin particles containing alum: preparation and in vitro properties. Vaccine. 1991;9:351–7. https://doi.org/10.1016/0264-410x(91)90063-c . (PMID: 10.1016/0264-410x(91)90063-c)
      Lobigs M, Pavy M, Hall RA, Lobigs P, Cooper P, et al. An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J Gen Virol. 2010;91:1407–17. https://doi.org/10.1099/vir.0.019190-0 . (PMID: 10.1099/vir.0.019190-0)
      Layton RC, Petrovsky N, Gigliotti AP, Pollock Z, Knight J, Donart N, et al. Delta inulin polysaccharide adjuvant enhances the ability of split-virion H5N1 vaccine to protect against lethal challenge in ferrets. Vaccine. 2011;29:6242–51. https://doi.org/10.1016/j.vaccine.2011.06.078 . (PMID: 10.1016/j.vaccine.2011.06.078)
      Gordon DL, Sajkov D, Woodman RJ, Honda-Okubo Y, et al. Randomized clinical trial of immunogenicity and safety of a recombinant H1N1/2009 pandemic influenza vaccine containing Advax™ polysaccharide adjuvant. Vaccine. 2012;30:5407–16. https://doi.org/10.1016/j.vaccine.2012.06.009 . (PMID: 10.1016/j.vaccine.2012.06.009)
      Gordon D, Kelley P, Heinzel S, Cooper P, Petrovsky N. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: A randomized controlled Phase 1 study. Vaccine. 2014;32:6469–77. https://doi.org/10.1016/j.vaccine.2014.09.034 . (PMID: 10.1016/j.vaccine.2014.09.034)
      Gordon DL, Sajkov D, Honda-Okubo Y, Wilks SH, Aban M, et al. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax™ delta inulin adjuvant. Vaccine. 2016;34:3780–6. https://doi.org/10.1016/j.vaccine.2016.05.071 . (PMID: 10.1016/j.vaccine.2016.05.071)
      Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, et al. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine. 2021;39:5940–53. (PMID: 10.1016/j.vaccine.2021.07.087)
      Li L, Honda-Okubo Y, Baldwin J, Bowen R, Bielefeldt-Ohmann H, Petrovsky N. Covax-19/Spikogen® vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine. 2022;40(23):3182–92. https://doi.org/10.1016/j.vaccine.2022.04.041 . (PMID: 10.1016/j.vaccine.2022.04.041)
      Tabarsi P, Anjidani N, Shahpari R, Mardani M, Sabzvari A, Yazdani B, et al. Safety and immunogenicity of SpikoGen®, an Advax-CpG55.2-adjuvanted SARS-CoV-2 spike protein vaccine: a phase 2 randomized placebo-controlled trial in both seropositive and seronegative populations. Clin Microbiol Infect. 2022. https://doi.org/10.1016/j.cmi.2022.04.004 . (PMID: 10.1016/j.cmi.2022.04.004)
      Chavdaa VP, Vorab LK, Viholc DR. COVAX-19Ⓡ vaccine: completely blocks virus transmission to non-immune individuals. Clin Complement Med Pharmacol. 2021;1(1): 100004. (PMID: 10.1016/j.ccmp.2021.100004)
      Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC. The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties. Glycoconj J. 2013;30:641–57. https://doi.org/10.1007/s10719-012-9464-4 . (PMID: 10.1007/s10719-012-9464-4)
      da Silva LCN, Correia MTS. Plant lectins and Toll-like receptors: implications for therapy of microbial infections. Front Microbiol. 2014;5:20. https://doi.org/10.3389/fmicb.2014.00020 . (PMID: 10.3389/fmicb.2014.00020)
      Coelho LC, Silva PM, Lima VL, Pontual EV, Paiva PM, Napoleão TH, et al. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid Based Complement Alternat Med. 2017;2017:1594074. https://doi.org/10.1155/2017/1594074 . (PMID: 10.1155/2017/1594074)
      Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. Bitter-sweet symphony: glycan–lectin interactions in virus biology. FEMS Microbiol Rev. 2014;38:598–632. https://doi.org/10.1111/1574-6976.12052 . (PMID: 10.1111/1574-6976.12052)
      Lardone RD, Garay YC, Parodi P, de la Fuente S, et al. How glycobiology can help us treat and beat the COVID-19 pandemic. J Biol Chem. 2021;296: 100375. https://doi.org/10.1016/j.jbc.2021.100375 . (PMID: 10.1016/j.jbc.2021.100375)
      Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol. 2020;11: 576622. https://doi.org/10.3389/fimmu.2020.576622 . (PMID: 10.3389/fimmu.2020.576622)
      Saad AAD. Recombinant lectins as pioneering anti-viral agents against COVID-19. Hematol Transfus Int J. 2021;9(4):77–9.
      Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, et al. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 2007;75:179–87. https://doi.org/10.1016/j.antiviral.2007.03.003 . (PMID: 10.1016/j.antiviral.2007.03.003)
      Carneiro DC, Fernandez LG, Monteiro-Cunha JP, Benevides RG, Cunha Lima ST. A patent review of the antimicrobial applications of lectins: perspectives on therapy of infectious diseases. J Appl Microbiol. 2021;132:841–54. https://doi.org/10.1111/jam.15263 . (PMID: 10.1111/jam.15263)
      Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–6. https://doi.org/10.1126/science.291.5512.2370 . (PMID: 10.1126/science.291.5512.2370)
      Smith AE, Helenius A. How viruses enter animal cells. Science. 2004;304(5668):237–42. https://doi.org/10.1126/science.1094823 . (PMID: 10.1126/science.1094823)
      Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem. 1988;57:785–838. (PMID: 10.1146/annurev.bi.57.070188.004033)
      Lavelle EC, Grant G, Pusztai A, Pfüller U, O’hagan DT. The identification of plant lectins with mucosal adjuvant activity. Immunology. 2001;102:77–86. https://doi.org/10.1046/j.1365-2567.2001.01157.x . (PMID: 10.1046/j.1365-2567.2001.01157.x)
      Lavelle EC, Grant G, Pusztai A, Pfüller U, O’Hagan DT. Mucosal immunogenicity of plant lectins in mice. Immunology. 2000;99:30–7. https://doi.org/10.1046/j.1365-2567.2000.00932.x . (PMID: 10.1046/j.1365-2567.2000.00932.x)
      Afonso-Cardoso SR, Rodrigues FH, Gomes MAB, Silva AG, Rocha A, GuimarÃes AHB, Candeloro I, Favoreto S, Ferreira MS, de Souza MA. Protective effect of lectin from Synadenium carinatum on Leishmania amazonensis infection in BALB/c mice. Korean J Parasitol. 2007;45:255. https://doi.org/10.3347/kjp.2007.45.4.255 . (PMID: 10.3347/kjp.2007.45.4.255)
      Cardoso MRD, Mota CM, Ribeiro DP, Noleto PG, Andrade WBF, Souza MA, et al. Adjuvant and immunostimulatory effects of a D-galactose-binding lectin from Synadenium carinatum latex (ScLL) in the mouse model of vaccination against neosporosis. Vet Res. 2012;43(1):76. https://doi.org/10.1186/1297-9716-43-76 . (PMID: 10.1186/1297-9716-43-76)
      Teixeira CR, Cavassani KA, Gomes RB, Teixeira MJ, Roque-Barreira MC, Cavada BS, et al. Potential of KM+ lectin in immunization against Leishmania amazonensis infection. Vaccine. 2006;24:3001–8. https://doi.org/10.1016/j.vaccine.2005.11.067 . (PMID: 10.1016/j.vaccine.2005.11.067)
      Albuquerque DA, Martins GA, Campos-Neto A, Silva JS. The adjuvant effect of jacalin on the mouse humoral immune response to trinitrophenyl and Trypanosoma cruzi. Immunol Lett. 1999;68:375–81. https://doi.org/10.1016/s0165-2478(99)00079-6 . (PMID: 10.1016/s0165-2478(99)00079-6)
      Unitt J, Hornigold D. Plant lectins are novel Toll-like receptor agonists. Biochem Pharmacol. 2011;81:1324–8. https://doi.org/10.1016/j.bcp.2011.03.010 . (PMID: 10.1016/j.bcp.2011.03.010)
      Liu Y, Cecílio NT, Carvalho FC, Roque-Barreira MC, Feizi T. Glycan microarray analysis of the carbohydrate-recognition specificity of native and recombinant forms of the lectin ArtinM. Data Br. 2015;5:1035–47. https://doi.org/10.1016/j.dib.2015.11.014 . (PMID: 10.1016/j.dib.2015.11.014)
      Panunto-Castelo A, Souza MA, Roque-Barreira MC, Silva JS. KM+, a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection. Glycobiology. 2001;11:1035–42. https://doi.org/10.1093/glycob/11.12.1035 . (PMID: 10.1093/glycob/11.12.1035)
      Souza MA, Amâncio-Pereira F, Cardoso CRB, Silva AG, et al. Isolation and partial characterization of a D-galactose-binding lectin from the latex of Synadenium carinatum. Braz Arch Biol Technol. 2005;48:705–16. https://doi.org/10.1590/s1516-89132005000600005 . (PMID: 10.1590/s1516-89132005000600005)
      Dong Q, Sugiura T, Toyohira Y, Yoshida Y, Yanagihara N, Karasaki Y. Stimulation of IFN-γ production by garlic lectin in mouse spleen cells: involvement of IL-12 via activation of p38 MAPK and ERK in macrophages. Phytomedicine. 2011;18(4):309–16. https://doi.org/10.1016/j.phymed.2010.06.008 . (PMID: 10.1016/j.phymed.2010.06.008)
      Padiyappa SD, Avalappa H, Somegowda M, Sridhara S, et al. Immunoadjuvant and humoral immune responses of garlic (Allium sativum L.) lectins upon systemic and mucosal administration in BALB/c mice. Molecules. 2022;27:1375. https://doi.org/10.3390/molecules27041375 . (PMID: 10.3390/molecules27041375)
      Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol. 2014;49:439–62. https://doi.org/10.3109/10409238.2014.953628 . (PMID: 10.3109/10409238.2014.953628)
      Kensil CR. Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst. 1996;13(1–2):1–55.
      Oda K, Matsuda H, Murakami T, Katayama S, Ohgitani T, Yoshikawa M. Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biol Chem. 2000. https://doi.org/10.1515/bc.2000.009 . (PMID: 10.1515/bc.2000.009)
      Zhai L, Li Y, Wang W, Hu S. Enhancement of humoral immune responses to inactivated Newcastle disease and avian influenza vaccines by oral administration of ginseng stem-and-leaf saponins in chickens. Poult Sci. 2011;90:1955–9. https://doi.org/10.3382/ps.2011-01433 . (PMID: 10.3382/ps.2011-01433)
      Zhai L, Li Y, Wang W, Wang Y, Hu S. Effect of oral administration of ginseng stem-and-leaf saponins (GSLS) on the immune responses to Newcastle disease vaccine in chickens. Vaccine. 2011;29:5007–14. https://doi.org/10.1016/j.vaccine.2011.04.097 . (PMID: 10.1016/j.vaccine.2011.04.097)
      Zhai L, Wang Y, Yu J, Hu S. Enhanced immune responses of chickens to oral vaccination against infectious bursal disease by ginseng stem-leaf saponins. Poult Sci. 2014;93:2473–81. https://doi.org/10.3382/ps.2014-04056 . (PMID: 10.3382/ps.2014-04056)
      Xiao C, Rajput ZI, Hu S. Improvement of a commercial foot-and-mouth disease vaccine by supplement of Quil A. Vaccine. 2007;25:4795–800. https://doi.org/10.1016/j.vaccine.2007.04.027 . (PMID: 10.1016/j.vaccine.2007.04.027)
      Li Y, Xie F, Chen J, Fan Q, Zhai L, Hu S. Increased humoral immune responses of pigs to foot-and-mouth disease vaccine supplemented with ginseng stem and leaf saponins. Chem Biodivers. 2012;9:2225–35. https://doi.org/10.1002/cbdv.201100377 . (PMID: 10.1002/cbdv.201100377)
      Zhang C, Wang Y, Wang M, Su X, Lu Y, Su F, Hu S. Rapeseed oil and ginseng saponins work synergistically to enhance Th1 and Th2 immune responses induced by the foot-and-mouth disease vaccine. Clin Vaccine Immunol. 2014;21:1113–9. https://doi.org/10.1128/cvi.00127-14 . (PMID: 10.1128/cvi.00127-14)
      Li R, Ma Y, Zhai L, Lu Y, et al. Enhanced immune response to foot-and-mouth disease vaccine by oral administration of ginseng stem-leaf saponins. Immunopharmacol Immunotoxicol. 2016;38:257–63. https://doi.org/10.1080/08923973.2016.1184680 . (PMID: 10.1080/08923973.2016.1184680)
      Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J, et al. Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol. 1992;148(5):1519–25.
      Sasaki S, Sumino K, Hamajima K, Fukushima J, Ishii N, Kawamoto S, et al. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J Virol. 1998;72:4931–9. https://doi.org/10.1128/jvi.72.6.4931-4939.1998 . (PMID: 10.1128/jvi.72.6.4931-4939.1998)
      de Costa F, Yendo ACA, Cibulski SP, Fleck JD, Roehe PM, Spilki FR, et al. Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-A saponins are equally effective in inducing specific immune responses. PLoS ONE. 2014;9: e105374. https://doi.org/10.1371/journal.pone.0105374 . (PMID: 10.1371/journal.pone.0105374)
      Silveira F, Cibulski SP, Varela AP, Marqués JM, Chabalgoity A, de Costa F, et al. Quillaja brasiliensis saponins are less toxic than Quil A and have similar properties when used as an adjuvant for a viral antigen preparation. Vaccine. 2011;29:9177–82. https://doi.org/10.1016/j.vaccine.2011.09.137 . (PMID: 10.1016/j.vaccine.2011.09.137)
      Ren W, Sun H, Gao GF, Chen J, Sun S, et al. Recombinant SARS-CoV-2 spike S1-Fc fusion protein induced high levels of neutralizing responses in nonhuman primates. Vaccine. 2020;38:5653–8. https://doi.org/10.1016/j.vaccine.2020.06.066 . (PMID: 10.1016/j.vaccine.2020.06.066)
      Santos WR, de Lima VMF, de Souza EP, Bernardo RR, Palatnik M, de Sousa CBP. Saponins, IL12 and BCG adjuvant in the FML-vaccine formulation against murine visceral leishmaniasis. Vaccine. 2002;21:30–43. https://doi.org/10.1016/s0264-410x(02)00444-9 . (PMID: 10.1016/s0264-410x(02)00444-9)
      Waite DC, Jacobson EW, Ennis FA, Edelman R, White B, et al. Three double-blind, randomized trials evaluating the safety and tolerance of different formulations of the saponin adjuvant QS-21. Vaccine. 2001;19:3957–67. https://doi.org/10.1016/s0264-410x(01)00142-6 . (PMID: 10.1016/s0264-410x(01)00142-6)
      Vandepapelière P, Rehermann B, Koutsoukos M, Moris P, Garçon N, et al. Potent enhancement of cellular and humoral immune responses against recombinant hepatitis B antigens using AS02A adjuvant in healthy adults. Vaccine. 2005;2005(23):2591–601. https://doi.org/10.1016/j.vaccine.2004.11.034 . (PMID: 10.1016/j.vaccine.2004.11.034)
      Leroux-Roels G, Bourguignon P, Willekens J, Janssens M, Clement F, et al. Immunogenicity and safety of a booster dose of an investigational adjuvanted polyprotein HIV-1 vaccine in healthy adults and effect of administration of chloroquine. Clin Vaccine Immunol. 2014;21:302–11. https://doi.org/10.1128/cvi.00617-13 . (PMID: 10.1128/cvi.00617-13)
      Leroux-Roels I, Koutsoukos M, Clement F, Steyaert S, et al. Strong and persistent CD4+ T-cell response in healthy adults immunized with a candidate HIV-1 vaccine containing gp120, Nef and Tat antigens formulated in three Adjuvant Systems. Vaccine. 2010;28:7016–24. https://doi.org/10.1016/j.vaccine.2010.08.035 . (PMID: 10.1016/j.vaccine.2010.08.035)
      Van Braeckel E, Bourguignon P, Koutsoukos M, Clement F, et al. An adjuvanted polyprotein HIV-1 vaccine induces polyfunctional cross-reactive CD4+ T cell responses in seronegative volunteers. Clin Infect Dis. 2011;52:522–31. https://doi.org/10.1093/cid/ciq160 . (PMID: 10.1093/cid/ciq160)
      Schwarz TF, Volpe S, Catteau G, Chlibek R, David MP, Richardus JH, Lal H, et al. Persistence of immune response to an adjuvanted varicella-zoster virus subunit vaccine for up to year nine in older adults. Hum Vaccin Immunother. 2018;14:1370–7. https://doi.org/10.1080/21645515.2018.1442162 . (PMID: 10.1080/21645515.2018.1442162)
      Formica N, Mallory R, Albert G, Robinson M, Plested JS, Cho I, et al. Different dose regimens of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373) in younger and older adults: a phase 2 randomized placebo-controlled trial. PLoS Med. 2021;18(10): e1003769. https://doi.org/10.1371/journal.pmed.1003769 . (PMID: 10.1371/journal.pmed.1003769)
      Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NV-CoV2373 Covid-19 vaccine. N Engl J Med. 2021;385(13):1172–83. (PMID: 10.1056/NEJMoa2107659)
      Tian JH, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun. 2021;12(1):372. (PMID: 10.1038/s41467-020-20653-8)
      Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383(24):2320–32. https://doi.org/10.1056/NEJMoa2026920 . (PMID: 10.1056/NEJMoa2026920)
      Bian L, Gao F, Zhang J, He Q, Mao Q, Xu M, Liang Z. Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Rev Vaccines. 2021;20(4):365–73. https://doi.org/10.1080/14760584.2021.1903879 . (PMID: 10.1080/14760584.2021.1903879)
    • Grant Information:
      OLP0043 CSIR
    • Contributed Indexing:
      Keywords: COVID-19; Drugs; Immuno-adjuvants; Plants; SARS-CoV-2; Vaccines
    • Accession Number:
      0 (COVID-19 Vaccines)
      0 (Adjuvants, Immunologic)
    • Publication Date:
      Date Created: 20220920 Date Completed: 20221215 Latest Revision: 20221215
    • Publication Date:
      20221215
    • Accession Number:
      PMC9487851
    • Accession Number:
      10.1007/s43440-022-00418-4
    • Accession Number:
      36125739