Menu
×
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Isaac JA;Isaac JA; Devaux D; Devaux D; Bouchet R; Bouchet R
- Source:
Nature materials [Nat Mater] 2022 Dec; Vol. 21 (12), pp. 1412-1418. Date of Electronic Publication: 2022 Sep 15.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101155473 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4660 (Electronic) Linking ISSN: 14761122 NLM ISO Abbreviation: Nat Mater Subsets: PubMed not MEDLINE; MEDLINE
- Publication Information: Original Publication: London, UK : Nature Pub. Group, [2002]-
- Abstract: Solid-state batteries are seen as key to the development of safer and higher-energy-density batteries, by limiting flammability and enabling the use of the lithium metal anode, respectively. Composite polymer-ceramic electrolytes are a possible solution for their realization, by benefiting from the combined mechanical properties of the polymer electrolyte and the thermal stability and high conductivity of the ceramic electrolyte. In this study we used different liquid electrolyte chemistries as models for the polymer electrolytes, and evaluated the effect of adding a variety of porous and dense ceramic electrolytes on the conductivity. All the results could be modelled with the effective medium theory, allowing prediction of the conductivity of electrolyte combinations. We unambiguously determined that highly conductive porous particles act as insulators in such systems, whereas dense particles act as conductors, thereby advancing our understanding of composite electrolyte conductivity.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.) - References: Armand, M. & Tarascon, J. M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (PMID: 10.1038/35104644)
Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). (PMID: 10.1038/nmat4834)
Varzi, A., Raccichini, R. & Scrosati, B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251–17259 (2016). (PMID: 10.1039/C6TA07384K)
Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-0657-x (2020).
Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00268 (2019).
Long, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). (PMID: 10.1039/C6TA02621D)
Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. & Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). (PMID: 10.1016/j.chempr.2019.05.009)
Sun, C., Liu, J., Gong, Y., Wilkinson, D. P. & Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). (PMID: 10.1016/j.nanoen.2017.01.028)
Meesala, Y., Jena, A., Chang, H. & Liu, R. S. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2, 2734–2751 (2017). (PMID: 10.1021/acsenergylett.7b00849)
Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019). (PMID: 10.1038/s41563-019-0431-3)
Balaish, M. et al. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy https://doi.org/10.1038/s41560-020-00759-5 (2021).
Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. https://doi.org/10.1038/s41563-020-00903-2 (2021).
Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019). (PMID: 10.1038/s41563-019-0438-9)
Zhang, J. et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75 La3 Zr1.75 Ta0.25 O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5, 4940–4948 (2017). (PMID: 10.1039/C6TA10066J)
Chen, F. et al. Solid polymer electrolytes incorporating cubic Li7 La3 Zr2 O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 258, 1106–1114 (2017). (PMID: 10.1016/j.electacta.2017.11.164)
Zhang, X. et al. Synergistic coupling between Li6.75 La3 Zr1.75 Ta0.25 O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017). (PMID: 10.1021/jacs.7b06364)
Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic. Nano Energy 46, 176–184 (2018). (PMID: 10.1016/j.nanoen.2017.12.037)
Li, R. et al. Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Adv. Eng. Mater. https://doi.org/10.1002/adem.201900055 (2019).
Villa, A., Verduzco, J. C., Libera, J. A. & Marinero, E. E. Ionic conductivity optimization of composite polymer electrolytes through filler particle chemical modification. Ionics 27, 2483–2493 (2021). (PMID: 10.1007/s11581-021-04042-9)
Zha, W., Chen, F., Yang, D., Shen, Q. & Zhang, L. High-performance Li6.4 La3 Zr1.4 Ta0.6 O12 /poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J. Power Sources 397, 87–94 (2018). (PMID: 10.1016/j.jpowsour.2018.07.005)
Zhang, J. et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016). (PMID: 10.1016/j.nanoen.2016.09.002)
Zhao, C. Z. et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl Acad. Sci. U.S.A. 114, 11069–11074 (2017). (PMID: 10.1073/pnas.1708489114)
Cheng, S. H. S. et al. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim. Acta 253, 430–438 (2017). (PMID: 10.1016/j.electacta.2017.08.162)
Tao, X. et al. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7 La3 Zr2 O12 /carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017). (PMID: 10.1021/acs.nanolett.7b00221)
Liang, Y. F. et al. A superior composite gel polymer electrolyte of Li7 La3 Zr2 O12 -poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Mater. Res. Bull. 102, 412–417 (2018). (PMID: 10.1016/j.materresbull.2018.02.051)
Li, Z. et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl. Mater. Interfaces 11, 784–791 (2019). (PMID: 10.1021/acsami.8b17279)
Samsinger, R. F. et al. Influence of the processing on the ionic conductivity of solid-state hybrid electrolytes based on glass-ceramic particles dispersed in PEO with LiTFSI. J. Electrochem. Soc. 167, 120538 (2020). (PMID: 10.1149/1945-7111/abb37f)
Mei, X. et al. A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes. Mater. Today Commun. 24, 101004 (2020). (PMID: 10.1016/j.mtcomm.2020.101004)
Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). (PMID: 10.1038/nmat3066)
Kato, M., Hiraoka, K. & Seki, S. Investigation of the ionic conduction mechanism of polyether/Li7 La3 Zr2 O12 composite solid electrolytes by electrochemical impedance spectroscopy. J. Electrochem. Soc. 167, 070559 (2020). (PMID: 10.1149/1945-7111/ab8478)
Langer, F., Bardenhagen, I., Glenneberg, J. & Kun, R. Microstructure and temperature dependent lithium ion transport of ceramic–polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li7 La3 Zr2 O12 . Solid State Ion. 291, 8–13 (2016). (PMID: 10.1016/j.ssi.2016.04.014)
Wang, Y. J., Pan, Y. & Kim, D. Conductivity studies on ceramic Li1.3 Al0.3 Ti1.7 (PO4 )3 -filled PEO-based solid composite polymer electrolytes. J. Power Sources 159, 690–701 (2006). (PMID: 10.1016/j.jpowsour.2005.10.104)
Zhao, Y. et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ion. 295, 65–71 (2016). (PMID: 10.1016/j.ssi.2016.07.013)
Xia, Y. et al. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chem. Eur. J. 23, 15203–15209 (2017). (PMID: 10.1002/chem.201703464)
Wang, W., Yi, E., Fici, A. J., Laine, R. M. & Kieffer, J. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C. 121, 2563–2573 (2017). (PMID: 10.1021/acs.jpcc.6b11136)
Jung, Y.-C., Lee, S.-M., Choi, J.-H., Jang, S. S. & Kim, D.-W. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 162, A704–A710 (2015). (PMID: 10.1149/2.0731504jes)
Park, M. S., Jung, Y. C. & Kim, D. W. Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6 Co0.2 Mn0.2 O2 cells. Solid State Ion. 315, 65–70 (2018). (PMID: 10.1016/j.ssi.2017.12.007)
MacFarlane, D. R., Newman, P. J., Nairn, K. M. & Forsyth, M. Lithium-ion conducting ceramic/polyether composites. Electrochim. Acta 43, 1333–1337 (1998). (PMID: 10.1016/S0013-4686(97)10039-1)
Yi, J., Liu, Y., Qiao, Y., He, P. & Zhou, H. Boosting the cycle life of Li–O2 batteries at elevated temperature by employing a hybrid polymer–ceramic solid electrolyte. ACS Energy Lett. 2, 1378–1384 (2017). (PMID: 10.1021/acsenergylett.7b00292)
Maxwell, J. C. A Treatise on Electricity and Magnetism Vol. 1 (Clarendon Press, 1873).
Barrande, M., Bouchet, R. & Denoyel, R. Tortuosity of porous particles. Anal. Chem. 79, 9115–9121 (2007). (PMID: 10.1021/ac071377r)
Weissberg, H. L. Effective diffusion coefficient in porous media. J. Appl. Phys. 34, 2636–2639 (1963). (PMID: 10.1063/1.1729783)
Bouchet, R., Devaux, D., Wernert, V. & Denoyel, R. Separation of bulk, surface, and topological contributions to the conductivity of suspensions of porous particles. J. Phys. Chem. C. 116, 5090–5096 (2012). (PMID: 10.1021/jp210614h)
Kubanska, A. et al. Elaboration of controlled size Li1.5 Al0.5 Ge1.5 (PO4 )3 crystallites from glass-ceramics. Solid State Ion. 266, 44–50 (2014). (PMID: 10.1016/j.ssi.2014.07.013)
Hou, M., Liang, F., Chen, K., Dai, Y. & Xue, D. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology 31, 132003 (2020). (PMID: 10.1088/1361-6528/ab5be7)
Devaux, D., Bouchet, R., Glé, D. & Denoyel, R. Mechanism of ion transport in PEO/LiTFSI complexes: effect of temperature, molecular weight and end groups. Solid State Ion. 227, 119–127 (2012). (PMID: 10.1016/j.ssi.2012.09.020)
Pfaffenhuber, C., Göbel, M., Popovic, J. & Maier, J. Soggy-sand electrolytes: status and perspectives. Phys. Chem. Chem. Phys. 15, 18318–18335 (2013). (PMID: 10.1039/c3cp53124d)
Aveyard, R. et al. Solid/Liquid Dispersions (ed. Tadros, T. F.) (Academic Press, 1987).
Weiss, M. et al. From liquid‑ to solid‑state batteries: ion transfer kinetics of heteroionic interfaces. Electrochem. Energy Rev. https://doi.org/10.1007/s41918-020-00062-7 (2020). - Publication Date: Date Created: 20220915 Latest Revision: 20221201
- Publication Date: 20231215
- Accession Number: 10.1038/s41563-022-01343-w
- Accession Number: 36109675
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.