Large-scale reforestation can increase water yield and reduce drought risk for water-insecure regions in the Asia-Pacific.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
    • Publication Information:
      Publication: : Oxford : Blackwell Pub.
      Original Publication: Oxford, UK : Blackwell Science, 1995-
    • Subject Terms:
    • Abstract:
      Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modeling for the period 2041-2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < .05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China, and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience nonsignificant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation.
      (© 2022 John Wiley & Sons Ltd.)
    • References:
      Abiodun, B. J., Adeyewa, Z. D., Oguntunde, P. G., Salami, A. T., & Ajayi, V. O. (2012). Modeling the impacts of reforestation on future climate in West Africa. Theoretical and Applied Climatology, 110(1-2), 77-96. https://doi.org/10.1007/s00704-012-0614-1.
      Alkon, M., He, X., Paris, A. R., Liao, W., Hodson, T., Wanders, N., & Wang, Y. (2019). Water security implications of coal-fired power plants financed through China's belt and road initiative. Energy Policy, 132, 1101-1109. https://doi.org/10.1016/J.ENPOL.2019.06.044.
      Bader, B., & Yan, J. (2020). Package ‘eva’: Extreme value analysis with goodness-of-fit testing. R Package Version 0.2.6. https://cran.r-project.org/web/packages/eva/eva.pdf.
      Bader, B., Yan, J., & Zhang, X. (2016). Automated selection of r for the r largest order statistics approach with adjustment for sequential testing. Statistics and Computing, 27(6), 1435-1451. https://doi.org/10.1007/S11222-016-9697-3.
      Belušić, D., Fuentes-Franco, R., Strandberg, G., & Jukimenko, A. (2019). Afforestation reduces cyclone intensity and precipitation extremes over Europe. Environmental Research Letters, 14(7), 074009. https://doi.org/10.1088/1748-9326/AB23B2.
      Bennett, B. M., & Barton, G. A. (2018). The enduring link between forest cover and rainfall: A historical perspective on science and policy discussions. Forest Ecosystems, 5(1), 1-9. https://doi.org/10.1186/S40663-017-0124-9.
      Brubaker, K. L., Entekhabi, D., & Eagleson, P. S. (1993). Estimation of continental precipitation recycling. Journal of Climate, 6(6), 1077-1089. https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.
      Cai, J., Liu, Y., Lei, T., & Pereira, L. S. (2007). Estimating reference evapotranspiration with the FAO penman-Monteith equation using daily weather forecast messages. Agricultural and Forest Meteorology, 145(1-2), 22-35. https://doi.org/10.1016/J.AGRFORMET.2007.04.012.
      Cao, Q., Wu, J., Yu, D., & Wang, W. (2019). The biophysical effects of the vegetation restoration program on regional climate metrics in the loess plateau, China. Agricultural and Forest Meteorology, 268, 169-180. https://doi.org/10.1016/J.AGRFORMET.2019.01.022.
      Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., & Zhang, H. (2011). Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration. Earth-Science Reviews, 104(4), 240-245. https://doi.org/10.1016/J.EARSCIREV.2010.11.002.
      Cao, S., Tian, T., Chen, L., Dong, X., Yu, X., & Wang, G. (2010). Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio, 39, 279-283. https://doi.org/10.1007/s13280-010-0038-z.
      Cerasoli, S., Yin, J., & Porporato, A. (2021). Cloud cooling effects of afforestation and reforestation at midlatitudes. Proceedings of the National Academy of Sciences, 118(33), e2026241118. https://doi.org/10.1073/PNAS.2026241118.
      Chen, M., Vernon, C. R., Graham, N. T., Hejazi, M., Huang, M., Cheng, Y., & Calvin, K. (2020). Global land use for 2015-2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Scientific Data, 7, 320. https://doi.org/10.1038/s41597-020-00669-x.
      Cheng, Y., Huang, M., Lawrence, D. M., Calvin, K., Lombardozzi, D. L., Sinha, E., Pan, M., & He, X. (2022). Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States. Science Advances, 8(18), 8237. https://doi.org/10.1126/SCIADV.ABM8237/SUPPL_FILE/SCIADV.ABM8237_SM.PDF.
      Cheng, Y., Leung, L. R., Huang, M., Koven, C., Detto, M., Knox, R., Bisht, G., Bretfeld, M., & Fisher, R. A. (2022). Modeling the joint effects of vegetation characteristics and soil properties on ecosystem dynamics in a Panama tropical Forest. Journal of Advances in Modeling Earth Systems, 14(1), e2021MS002603. https://doi.org/10.1029/2021MS002603.
      Cheng, Y., Ogden, F. L., Zhu, J., & Bretfeld, M. (2018). Land use-dependent preferential flow paths affect hydrological response of steep tropical lowland catchments with Saprolitic soils. Water Resources Research, 54(8), 5551-5566. https://doi.org/10.1029/2017WR021875.
      Cui, M., Ferreira, F., Fung, T. K., & Matos, J. S. (2021). Tale of two cities: How nature-based solutions help create adaptive and resilient urban water management practices in Singapore and Lisbon. Sustainability, 13(18), 10427. https://doi.org/10.3390/SU131810427.
      Dimri, A. P., Yasunari, T., Kotlia, B. S., Mohanty, U. C., & Sikka, D. R. (2016). Indian winter monsoon: Present and past. Earth-Science Reviews, 163, 297-322. https://doi.org/10.1016/J.EARSCIREV.2016.10.008.
      Duan, J., & Mao, J. (2008). Influence of aerosol on regional precipitation in North China. Chinese Science Bulletin, 54(3), 474-483. https://doi.org/10.1007/S11434-008-0447-6.
      Ellison, D., Futter, M. N., & Bishop, K. (2012). On the forest cover-water yield debate: From demand- to supply-side thinking. Global Change Biology, 18(3), 806-820. https://doi.org/10.1111/j.1365-2486.2011.02589.x.
      Emanuel, K. A. (1991). A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences, 48(21), 2313-2329. https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.
      Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235-1238. https://doi.org/10.1126/SCIENCE.1152747.
      Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng, Y., Li, Y., Jiang, X., & Wu, B. (2016). Revegetation in China's loess plateau is approaching sustainable water resource limits. Nature Climate Change, 6(11), 1019-1022. https://doi.org/10.1038/nclimate3092.
      Filoso, S., Bezerra, M. O., Weiss, K. C. B., & Palmer, M. A. (2017). Impacts of forest restoration on water yield: A systematic review. PLoS One, 12(8), e0183210. https://doi.org/10.1371/JOURNAL.PONE.0183210.
      Ge, J., Pitman, A. J., Guo, W., Zan, B., & Fu, C. (2020). Impact of revegetation of the loess plateau of China on the regional growing season water balance. Hydrology and Earth System Sciences, 24(2), 515-533. https://doi.org/10.5194/HESS-24-515-2020.
      Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11645-11650. https://doi.org/10.1073/pnas.1710465114.
      Grobicki, A., MacLeod, F., & Pischke, F. (2015). Integrated policies and practices for flood and drought risk management. Water Policy, 17(S1), 180-194. https://doi.org/10.2166/WP.2015.009.
      Gupta, S. K., Deshpande, R. D., Bhattacharya, S. K., & Jani, R. A. (2005). Groundwater δ18O and δD from central Indian Peninsula: Influence of the Arabian Sea and the bay of Bengal branches of the summer monsoon. Journal of Hydrology, 303(1-4), 38-55. https://doi.org/10.1016/J.JHYDROL.2004.08.016.
      Hamon, W. R. (1961). Estimating potential evapotranspiration. Journal of the Hydraulics Division, 87(3), 107-120. https://doi.org/10.1061/JYCEAJ.0000599.
      He, X., Bryant, B. P., Moran, T., Mach, K. J., Wei, Z., & Freyberg, D. L. (2021). Climate-informed hydrologic modeling and policy typology to guide managed aquifer recharge. Science Advances, 7(17), 6025-6046. https://doi.org/10.1126/SCIADV.ABE6025/SUPPL_FILE/ABE6025_SM.PDF.
      He, X., Estes, L., Konar, M., Tian, D., Anghileri, D., Baylis, K., Evans, T. P., & Sheffield, J. (2019). Integrated approaches to understanding and reducing drought impact on food security across scales. Current Opinion in Environmental Sustainability, 40, 43-54. https://doi.org/10.1016/J.COSUST.2019.09.006.
      Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2019). ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) https://doi.org/10.24381/cds.f17050d7.
      Hoek van Dijke, A. J., Herold, M., Mallick, K., Benedict, I., Machwitz, M., Schlerf, M., Pranindita, A., Theeuwen, J. J. E., Bastin, J.-F., & Teuling, A. J. (2022). Shifts in regional water availability due to global tree restoration. Nature Geoscience, 15(5), 363-368. https://doi.org/10.1038/s41561-022-00935-0.
      Holgate, C. M., Evans, J. P., van Dijk, A. I. J. M., Pitman, A. J., & Di Virgilio, G. (2020). Australian precipitation recycling and evaporative source regions. Journal of Climate, 33(20), 8721-8735. https://doi.org/10.1175/JCLI-D-19-0926.1.
      Holtslag, A. A. M., De Bruijn, E. I. F., & Pan, H.-L. (1990). A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review, 118(8), 1561-1575. https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.
      Hong, Y., He, X., Cerato, A., Zhang, K., Hong, Z., & Liao, Z. (2015). Predictability of a physically based model for rainfall-induced shallow landslides: Model development and case studies. In M. Scaioni (Ed.), Modern technologies for landslide monitoring and prediction. Springer Natural Hazards (pp. 165-178). Springer. https://doi.org/10.1007/978-3-662-45931-7_9.
      Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos, A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Goldewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E., Thomson, A., … Wang, Y. P. (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109(1), 117-161. https://doi.org/10.1007/s10584-011-0153-2.
      Karadan, M. M., Raju, P. V. S., & Mishra, A. (2021). Simulations of Indian summer monsoon using RegCM: A comparison with ERA and GFDL analysis. Theoretical and Applied Climatology, 143(3), 1381-1391. https://doi.org/10.1007/S00704-020-03496-7.
      Kemppinen, K. M. S., Collins, P. M., Hole, D. G., Wolf, C., Ripple, W. J., & Gerber, L. R. (2020). Global reforestation and biodiversity conservation. Conservation Biology, 34(5), 1221-1228. https://doi.org/10.1111/COBI.13478.
      Koh, L. P., Zeng, Y., Sarira, T. V., & Siman, K. (2021). Carbon prospecting in tropical forests for climate change mitigation. Nature Communications, 12(1), 1-9. https://doi.org/10.1038/s41467-021-21560-2.
      Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., … Yamada, T. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138-1140. https://doi.org/10.1126/SCIENCE.1100217.
      Koster, R. D., Suarez, M. J., Higgins, R. W., & Van den Dool, H. M. (2003). Observational evidence that soil moisture variations affect precipitation. Geophysical Research Letters, 30(5), 1241. https://doi.org/10.1029/2002GL016571.
      Kumar, D., & Dimri, A. P. (2020). Sensitivity of convective and land surface parameterization in the simulation of contrasting monsoons over CORDEX-South Asia domain using RegCM-4.4.5.5. Theoretical and Applied Climatology, 139(1-2), 297-322. https://doi.org/10.1007/S00704-019-02976-9/FIGURES/14.
      Lawrence, D. M., Thornton, P. E., Oleson, K. W., & Bonan, G. B. (2007). The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. Journal of Hydrometeorology, 8(4), 862-880. https://doi.org/10.1175/JHM596.1.
      Lechner, A. M., Gomes, R. L., Rodrigues, L., Ashfold, M. J., Selvam, S. B., Wong, E. P., Raymond, C. M., Zieritz, A., Sing, K. W., Moug, P., Billa, L., Sagala, S., Cheshmehzangi, A., Lourdes, K., Azhar, B., Sanusi, R., Ives, C. D., Tang, Y.-T., Tan, D. T., … Gibbins, C. (2020). Challenges and considerations of applying nature-based solutions in low- and middle-income countries in southeast and East Asia. Blue-Green Systems, 2, 331-351. https://doi.org/10.2166/bgs.2020.014.
      Leck, H., Conway, D., Bradshaw, M., & Rees, J. (2015). Tracing the water-energy-food nexus: Description theory and practice. Geography Compass, 9(8), 445-460. https://doi.org/10.1111/GEC3.12222.
      Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15), 2171-2186. https://doi.org/10.1002/HYP.9740.
      Li, Y., Piao, S., Li, L. Z. X., Chen, A., Wang, X., Ciais, P., Huang, L., Lian, X., Peng, S., Zeng, Z., Wang, K., & Zhou, L. (2018). Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 4(5), eaar4182. https://doi.org/10.1126/SCIADV.AAR4182.
      Locatelli, B., Catterall, C. P., Imbach, P., Kumar, C., Lasco, R., Marín-Spiotta, E., Mercer, B., Powers, J. S., Schwartz, N., & Uriarte, M. (2015). Tropical reforestation and climate change: Beyond carbon. Restoration Ecology, 23(4), 337-343. https://doi.org/10.1111/REC.12209.
      Lu, J., Sun, G., McNulty, S. G., & Amatya, D. M. (2005). A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association, 41(3), 621-633. https://doi.org/10.1111/J.1752-1688.2005.TB03759.X.
      Luck, M., Landis, M., & Gassert, F. (2015). Aqueduct water stress projections: Decadal projections of water supply and demand using CMIP5 GCMs. https://www.wri.org/publication/aqueduct-water-stress-projections-decadal-projections-water-supply-and-demand-using.
      Lv, M., Ma, Z., & Peng, S. (2019). Responses of terrestrial water cycle components to afforestation within and around the Yellow River basin. Atmospheric and Oceanic Science Letters, 12(2), 116-123. https://doi.org/10.1080/16742834.2019.1569456.
      Maity, S., Nayak, S., Singh, K. S., Nayak, H. P., & Dutta, S. (2021). Impact of soil moisture initialization in the simulation of Indian summer monsoon using RegCM4. Atmosphere, 12(9), 1148. https://doi.org/10.3390/ATMOS12091148.
      Meier, R., Schwaab, J., Seneviratne, S. I., Sprenger, M., Lewis, E., & Davin, E. L. (2021). Empirical estimate of forestation-induced precipitation changes in Europe. Nature Geoscience, 14(7), 473-478. https://doi.org/10.1038/s41561-021-00773-6.
      Mori, A. S., Dee, L. E., Gonzalez, A., Ohashi, H., Cowles, J., Wright, A. J., Loreau, M., Hautier, Y., Newbold, T., Reich, P. B., Matsui, T., Takeuchi, W., Okada, K., Seidl, R., & Isbell, F. (2021). Biodiversity-productivity relationships are key to nature-based climate solutions. Nature Climate Change, 11(6), 543-550. https://doi.org/10.1038/s41558-021-01062-1.
      Narain, D., Maron, M., Teo, H. C., Hussey, K., & Lechner, A. M. (2020). Best-practice biodiversity safeguards for belt and road Initiative's financiers. Nature Sustainability, 3, 650-657. https://doi.org/10.1038/s41893-020-0528-3.
      Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., & Ramirez-Villegas, J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data, 7, 7. https://doi.org/10.1038/s41597-019-0343-8.
      Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., … Yang, Z.-L. (2013). Technical description of version 4.5 of the Community Land Model (CLM). (No. NCAR/TN-503+STR). https://doi.org/10.5065/D6RR1W7M.
      Pal, J. S., Small, E. E., & Eltahir, E. A. B. (2000). Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. Journal of Geophysical Research: Atmospheres, 105(D24), 29579-29594. https://doi.org/10.1029/2000JD900415.
      Paparrizos, S., Maris, F., & Matzarakis, A. (2016). Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theoretical and Applied Climatology, 128(3), 745-759. https://doi.org/10.1007/S00704-015-1728-Z.
      Pathak, A., Ghosh, S., & Kumar, P. (2014). Precipitation recycling in the Indian subcontinent during summer monsoon. Journal of Hydrometeorology, 15(5), 2050-2066. https://doi.org/10.1175/JHM-D-13-0172.1.
      Sarira, T. V., Zeng, Y., Neugarten, R., Chaplin-Kramer, R., & Koh, L. P. (2022). Co-benefits of forest carbon projects in Southeast Asia. Nature Sustainability, 5(5), 393-396. https://doi.org/10.1038/s41893-022-00849-0.
      Satoh, Y., Kahil, T., Byers, E., Burek, P., Fischer, G., Tramberend, S., Greve, P., Flörke, M., Eisner, S., Hanasaki, N., Magnuszewski, P., Nava, L. F., Cosgrove, W., Langan, S., & Wada, Y. (2017). Multi-model and multi-scenario assessments of Asian water futures: The water futures and solutions (WFaS) initiative. Earth's Future, 5(7), 823-852. https://doi.org/10.1002/2016EF000503.
      Schymanski, S. J., & Or, D. (2017). Leaf-scale experiments reveal an important omission in the Penman-Monteith equation. Hydrology and Earth System Sciences, 21(2), 685-706. https://doi.org/10.5194/HESS-21-685-2017.
      Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., & Bounoua, L. (1996). A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. Journal of Climate, 9(4), 676-705. https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.
      Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4), 125-161. https://doi.org/10.1016/J.EARSCIREV.2010.02.004.
      Sengupta, S., & Sarkar, A. (2006). Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over North India. Earth and Planetary Science Letters, 250(3-4), 511-521. https://doi.org/10.1016/J.EPSL.2006.08.011.
      Sreekar, R., Zeng, Y., Zheng, Q., Lamba, A., Teo, H. C., Sarira, T. V., & Koh, L. P. (2022). Nature-based climate solutions for expanding the global protected area network. Biological Conservation, 269, 109529. https://doi.org/10.1016/J.BIOCON.2022.109529.
      Taniguchi, M., Endo, A., Gurdak, J. J., & Swarzenski, P. (2017). Water-energy-food nexus in the Asia-Pacific region. Journal of Hydrology: Regional Studies, 11, 1-8. https://doi.org/10.1016/J.EJRH.2017.06.004.
      Teo, H. C., Campos-Arceiz, A., Li, B. V., Wu, M., & Lechner, A. M. (2020). Building a green belt and road: A systematic review and comparative assessment of the Chinese and English-language literature. PLoS One, 15(9), e0239009. https://doi.org/10.1371/journal.pone.0239009.
      Teo, H. C., Hill, M. J., Lechner, A. M., Teo, F. Y., & Gibbins, C. N. (2021). Landscape-scale remote sensing and classification of lentic habitats in a tropical city. Wetlands, 41(7), 1-15. https://doi.org/10.1007/S13157-021-01491-W.
      Teo, H. C., Zeng, Y., Sarira, T. V., Fung, T. K., Zheng, Q., Song, X. P., Chong, K. Y., & Koh, L. P. (2021). Global urban reforestation can be an important natural climate solution. Environmental Research Letters, 16(3), 034059. https://doi.org/10.1088/1748-9326/abe783.
      Trimble, S. W., Weirich, F. H., & Hoag, B. L. (1987). Reforestation and the reduction of water yield on the southern Piedmont since circa 1940. Water Resources Research, 23(3), 425-437. https://doi.org/10.1029/WR023I003P00425.
      United Nations. (2021). Glasgow leaders' declaration on forests and land use. UN Climate Change Conference, UK 2021. https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/.
      Vu, M. T., Raghavan, V. S., & Liong, S. Y. (2016). Deriving short-duration rainfall IDF curves from a regional climate model. Natural Hazards, 85(3), 1877-1891. https://doi.org/10.1007/S11069-016-2670-9.
      Wan, W., Zhao, J., Li, H. Y., Mishra, A., Hejazi, M., Lu, H., Demissie, Y., & Wang, H. (2018). A holistic view of water management impacts on future droughts: A global multimodel analysis. Journal of Geophysical Research: Atmospheres, 123(11), 5947-5972. https://doi.org/10.1029/2017JD027825.
      Wang, L., Good, S. P., & Caylor, K. K. (2014). Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 41(19), 6753-6757. https://doi.org/10.1002/2014GL061439.
      WorldPop. (2021). Earth engine data catalog. https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop.
      Yao, Y., Cai, T., Ju, C., & He, C. (2015). Effect of reforestation on annual water yield in a large watershed in Northeast China. Journal of Forestry Research, 26(3), 697-702. https://doi.org/10.1007/s11676-015-0119-8.
      Zeng, X., Zhao, M., & Dickinson, R. E. (1998). Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. Journal of Climate, 11(10), 2628-2644. https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.
      Zhang, B., Tian, L., Yang, Y., & He, X. (2022). Revegetation does not decrease water yield in the loess plateau of China. Geophysical Research Letters, 49(9), e2022GL098025. https://doi.org/10.1029/2022GL098025.
      Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3), 701-708. https://doi.org/10.1029/2000WR900325.
      Zheng, Q., Siman, K., Zeng, Y., Teo, H. C., Sarira, T. V., Sreekar, R., & Koh, L. P. (2022). Future land-use competition constrains natural climate solutions. Science of the Total Environment, 838, 156409. https://doi.org/10.1016/J.SCITOTENV.2022.156409.
    • Contributed Indexing:
      Keywords: forest-water nexus; natural climate solutions; nature-based solutions; precipitation; socio-ecological systems; water balance; water risk; water stress
    • Accession Number:
      0 (Soil)
      059QF0KO0R (Water)
    • Publication Date:
      Date Created: 20220902 Date Completed: 20221004 Latest Revision: 20221103
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/gcb.16404
    • Accession Number:
      36054815