Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Sustained release of BMP-2 using self-assembled layer-by-layer film-coated implants enhances bone regeneration over burst release.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Elsevier Science Country of Publication: Netherlands NLM ID: 8100316 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1878-5905 (Electronic) Linking ISSN: 01429612 NLM ISO Abbreviation: Biomaterials Subsets: MEDLINE
- Publication Information:
Publication: <1995-> : Amsterdam : Elsevier Science
Original Publication: [Guilford, England] : IPC Science and Technology Press, 1980-
- Subject Terms:
- Abstract:
Current clinical products delivering the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) for bone regeneration have been plagued by safety concerns due to a high incidence of off-target effects resulting from bolus release and supraphysiological doses. Layer-by-layer (LbL) film deposition offers the opportunity to coat bone defect-relevant substrates with thin films containing proteins and other therapeutics; however, control of release kinetics is often hampered by interlayer diffusion of drugs throughout the film during assembly, which causes burst drug release. In this work, we present the design of different laponite clay diffusional barrier layer architectures in self-assembled LbL films to modulate the release kinetics of BMP-2 from the surface of a biodegradable implant. Release kinetics were tuned by incorporating laponite in different film arrangements and with varying deposition techniques to achieve release of BMP-2 over 2 days, 4 days, 14 days, and 30 days. Delivery of a low dose (0.5 μg) of BMP-2 over 2 days and 30 days using these LbL film architectures was then compared in an in vivo rat critical size calvarial defect model to determine the effect of BMP-2 release kinetics on bone regeneration. After 6 weeks, sustained release of BMP-2 over 30 days induced 3.7 times higher bone volume and 7.4 times higher bone mineral density as compared with 2-day release of BMP-2, which did not induce more bone growth than the uncoated scaffold control. These findings represent a crucial step in the understanding of how BMP-2 release kinetics influence treatment efficacy and underscore the necessity to optimize protein delivery methods in clinical formulations for bone regeneration. This work could be applied to the delivery of other therapeutic proteins for which careful tuning of the release rate is a key optimization parameter.
Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Paula T Hammond reports a relationship with Moderna Therapeutics Inc that includes: board membership. Paula T Hammond reports a relationship with Performance Indicator that includes: board membership. Paula T Hammond reports a relationship with Alector Inc that includes: board membership. Paula T Hammond reports a relationship with LayerBio, Inc. that includes: board membership. Robert F Padera reports a relationship with Medtronic Inc that includes: consulting or advisory.
(Copyright © 2022. Published by Elsevier Ltd.)
- References:
Curr Osteoporos Rep. 2015 Oct;13(5):327-35. (PMID: 26254939)
Tissue Eng Part A. 2009 Sep;15(9):2347-62. (PMID: 19249918)
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12531-5. (PMID: 12237412)
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10207-10212. (PMID: 16801543)
Curr Pharm Des. 2019;25(4):424-443. (PMID: 30947654)
J Mater Sci Mater Med. 2015 Dec;26(12):269. (PMID: 26507202)
Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8093-8. (PMID: 24938739)
Adv Drug Deliv Rev. 2012 Sep;64(12):1277-91. (PMID: 22512928)
Adv Mater. 2013 Jun 25;25(24):3329-36. (PMID: 23670944)
Adv Healthc Mater. 2021 May;10(9):e2001941. (PMID: 33738985)
Trends Biotechnol. 2001 Jul;19(7):255-65. (PMID: 11412949)
Biomaterials. 2014 Mar;35(8):2507-17. (PMID: 24388389)
J Inflamm Res. 2016 May 18;9:69-78. (PMID: 27274302)
Adv Mater. 2012 Mar 15;24(11):1445-50. (PMID: 22311551)
Biomaterials. 2021 Dec;279:121206. (PMID: 34715639)
Langmuir. 2007 Jul 31;23(16):8515-21. (PMID: 17602505)
Sci Rep. 2019 Jun 5;9(1):8299. (PMID: 31165768)
Bone. 2011 Sep;49(3):485-92. (PMID: 21621027)
Nanomedicine. 2018 Oct;14(7):2407-2420. (PMID: 28552649)
Biomaterials. 2011 Feb;32(5):1446-53. (PMID: 21084117)
Annu Rev Biomed Eng. 2020 Jun 4;22:1-24. (PMID: 32084319)
Biomacromolecules. 2008 Jun;9(6):1660-8. (PMID: 18476743)
J Control Release. 2011 Oct 30;155(2):159-66. (PMID: 21699932)
J Clin Periodontol. 2014 Aug;41(8):827-36. (PMID: 24807100)
Tissue Eng Part A. 2017 Dec;23(23-24):1343-1360. (PMID: 28457207)
Nat Protoc. 2012 Oct;7(10):1918-29. (PMID: 23018195)
Int J Mol Sci. 2017 Nov 09;18(11):. (PMID: 29120400)
Biomed Mater. 2019 Jan 30;14(2):025008. (PMID: 30609417)
Sci Transl Med. 2013 Jun 26;5(191):191ra83. (PMID: 23803705)
Nat Biotechnol. 1998 Mar;16(3):247-52. (PMID: 9528003)
Surg Neurol Int. 2011 Jan 24;2:10. (PMID: 21297932)
N Y State Dent J. 2012 Aug-Sep;78(5):37-9. (PMID: 23082692)
Biomacromolecules. 2021 Jun 14;22(6):2460-2471. (PMID: 33971092)
Biomaterials. 2007 Feb;28(4):632-40. (PMID: 17049374)
Spine (Phila Pa 1976). 2006 Mar 1;31(5):542-7. (PMID: 16508549)
Science. 2015 Apr 24;348(6233):aaa2491. (PMID: 25908826)
J Biol Chem. 2003 Oct 31;278(44):43229-35. (PMID: 12912996)
Int Orthop. 2007 Dec;31(6):729-34. (PMID: 17639384)
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12847-52. (PMID: 25136093)
Biomaterials. 2015 Jan;37:218-29. (PMID: 25453952)
Pharm Res. 2017 Jun;34(6):1152-1170. (PMID: 28342056)
Sci Rep. 2021 Jan 12;11(1):746. (PMID: 33436904)
Small. 2010 Nov 5;6(21):2392-404. (PMID: 20925040)
Biomaterials. 2011 Sep;32(26):6183-93. (PMID: 21645919)
ACS Nano. 2012 Jan 24;6(1):81-8. (PMID: 22176729)
Mol Pharm. 2018 Mar 5;15(3):1277-1283. (PMID: 29364691)
Biomaterials. 2010 May;31(13):3512-9. (PMID: 20149447)
Biomacromolecules. 2010 Aug 9;11(8):2053-9. (PMID: 20690713)
ACS Nano. 2016 Apr 26;10(4):4441-50. (PMID: 26923427)
Tissue Eng Part B Rev. 2016 Aug;22(4):284-97. (PMID: 26857241)
J Biomed Mater Res. 2002 Mar 5;59(3):585-90. (PMID: 11774317)
Genes Dis. 2016 Mar;3(1):56-71. (PMID: 27239485)
J Orthop Translat. 2019 Nov 21;24:198-208. (PMID: 33101971)
PLoS One. 2014 Aug 01;9(8):e104061. (PMID: 25084008)
Biomaterials. 2021 Oct;277:121117. (PMID: 34517277)
Surg Neurol Int. 2013 Jul 09;4(Suppl 5):S343-52. (PMID: 23878769)
J Mater Chem B. 2021 Sep 14;9(34):6856-6869. (PMID: 34396378)
ACS Nano. 2019 Jun 25;13(6):6372-6382. (PMID: 31184474)
Int J Oral Maxillofac Surg. 2014 Apr;43(4):506-13. (PMID: 24183512)
J Am Chem Soc. 2010 Dec 22;132(50):17840-8. (PMID: 21105659)
Acta Biomater. 2012 Feb;8(2):763-71. (PMID: 22100346)
- Grant Information:
F30 DK130564 United States DK NIDDK NIH HHS; F32 DE027877 United States DE NIDCR NIH HHS; P30 CA014051 United States CA NCI NIH HHS; R01 DE024747 United States DE NIDCR NIH HHS
- Contributed Indexing:
Keywords: BMP-2; Bone regeneration; Controlled release; Drug delivery; Layer-by-layer
- Accession Number:
0 (Bmp2 protein, rat)
0 (Bone Morphogenetic Protein 2)
0 (Delayed-Action Preparations)
- Publication Date:
Date Created: 20220818 Date Completed: 20220908 Latest Revision: 20230902
- Publication Date:
20230902
- Accession Number:
PMC10396073
- Accession Number:
10.1016/j.biomaterials.2022.121721
- Accession Number:
35981926
No Comments.