The role of cognitive control in the SNARC effect: A review.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Zhang P;Zhang P; Cao B; Cao B; Li F; Li F
  • Source:
    PsyCh journal [Psych J] 2022 Dec; Vol. 11 (6), pp. 792-803. Date of Electronic Publication: 2022 Aug 16.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Blackwell Pub. Asia Pty Country of Publication: Australia NLM ID: 101598595 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2046-0260 (Electronic) Linking ISSN: 20460252 NLM ISO Abbreviation: Psych J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Victoria, Australia : Blackwell Pub. Asia Pty
    • Subject Terms:
    • Abstract:
      The spatial-numerical association of response codes (SNARC) effect, in which people respond to small numbers faster with the left hand and to large numbers faster with the right hand, is a popular topic in cognitive psychology. Some well-known theoretical accounts explaining this effect include the mental number line model, polarity correspondence principle, dual-route model, and working memory account. However, these fail to explain the finding that the size of the SNARC effect is modulated by cognitive control. Here, we propose a new account-a cognitive control-based view of the SNARC effect. This view argues that the SNARC effect is fundamentally determined by cognitive control in resolving conflicts during stimulus-response mapping. Several subcomponents of cognitive control, such as working memory, mental or task set shifting, inhibition control, and conflict adaptation, can easily modulate the SNARC effect. The cognitive control-based view can account for the flexible SNARC effect observed in diverse task situations while providing new insight into its mechanism.
      (© 2022 Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.)
    • References:
      Aben, B., Verguts, T., & Bussche, E. V. D. (2017). Beyond trial-by-trial adaptation: A quantification of the time scale of cognitive control. Journal of Experimental Psychology Human Perception & Performance, 43(3), 509-517. https://doi.org/10.1037/xhp0000324.
      Adachi, I. (2014). Spontaneous spatial mapping of learned sequence in chimpanzees: Evidence for a SNARC-like effect. PLoS One, 9, e90373. https://doi.org/10.1371/journal.pone.0090373.
      Ahmad, S., Ch, A. H., Batool, A., Sittar, K., & Malik, M. (2016). Play and cognitive development: Formal operational perspective of Piaget's theory. Journal of Education and Practice, 7(28), 72-79 https://files.eric.ed.gov/fulltext/EJ1118552.pdf.
      Aleotti, S., Di Girolamo, F., Massaccesi, S., & Priftis, K. (2020). Numbers around Descartes: A preregistered study on the three-dimensional SNARC effect. Cognition, 195, 104111. https://doi.org/10.1016/j.cognition.2019.104111.
      Babakr, Z. H., Mohamedamin, P., & Kakamad, K. (2019). Piaget's cognitive developmental theory: Critical review. Education Quarterly Reviews, 2(3), 517-524. https://doi.org/10.31014/aior.1993.02.03.84.
      Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731-735. https://doi.org/10.1016/S0028-3932(98)00002-5.
      Baddeley, A. D., & Hitch, G. J. (1974). Working memory. The Psychology of Learning and Motivation: Advances in Research and Theory, 8, 47-89. https://doi.org/10.1016/S0079-7421(08)60452-1.
      Bae, G. Y., Choi, J. M., Cho, Y. S., & Proctor, R. W. (2009). Transfer of magnitude and spatial mappings to the SNARC effect for parity judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1506-1521. https://doi.org/10.1037/a0017257.
      Basso Moro, S., Dell'Acqua, R., & Cutini, S. (2018). The SNARC effect is not a unitary phenomenon. Psychonomic Bulletin & Review, 25(2), 688-695. https://doi.org/10.3758/s13423-017-1408-3.
      Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179-181. https://doi.org/10.1038/46035.
      Bulf, H., Capparini, C., Nava, E., de Hevia, M. D., & Cassia, V. M. (2022). Space modulates cross-domain transfer of abstract rules in infants. Journal of Experimental Child Psychology, 213, 105270. https://doi.org/10.1016/j.jecp.2021.105270.
      Bulf, H., de Hevia, M. D., & Macchi Cassia, V. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394-401. https://doi.org/10.1111/desc.12315.
      Cipora, K., He, Y., & Nuerk, H. (2020). The spatial-numerical association of response codes effect and math skills: Why related? Annals of the New York Academy of Sciences, 1477(1), 5-19. https://doi.org/10.1111/nyas.14355.
      Cipora, K., Hohol, M., Nuerk, H. C., Willmes, K., Brożek, B., Kucharzyk, B., & Nęcka, E. (2016). Professional mathematicians differ from controls in their spatial-numerical associations. Psychological Research, 80(4), 710-726. https://doi.org/10.1007/s00426-015-0677-6.
      Cooney, S. M., Holmes, C. A., & Newell, F. N. (2021). Children's spatial-numerical associations on horizontal, vertical, and sagittal axes. Journal of Experimental Child Psychology, 209, 105-169. https://doi.org/10.1016/j.jecp.2021.105169.
      Cutini, S., Duma, G. M., & Mento, G. (2021). How time shapes cognitive control: A high-density EEG study of task-switching. Biological Psychology, 160, 108030. https://doi.org/10.1016/j.biopsycho.2021.108030.
      Cutini, S., Scarpa, F., Scatturin, P., Dell'Acqua, R., & Zorzi, M. (2014). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. Cerebral Cortex, 24(2), 444-451. https://doi.org/10.1093/cercor/bhs321.
      Daar, M., & Pratt, J. (2008). Digits affect actions: The SNARC effect and response selection. Cortex, 44(4), 400-405. https://doi.org/10.1016/j.cortex.2007.12.003.
      Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396. https://doi.org/10.1037/0096-3445.122.3.371.
      de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 4809-4813. https://doi.org/10.1073/pnas.1323628111.
      Deng, Z., Chen, Y., Zhu, X., & Li, Y. (2017). The effect of working memory load on the SNARC effect: Maybe tasks have a word to say. Memory & Cognition, 45(3), 428-441. https://doi.org/10.3758/s13421-016-0676-x.
      Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135-168. https://doi.org/10.1146/annurev-psych-113011-143750.
      Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control. Science, 318(5855), 1387-1388. https://doi.org/10.1126/science.1151148.
      Didino, D., Breilb, C., & Knopsc, A. (2019). The influence of semantic processing and response latency on the SNARC effect. Acta Psychologica, 196, 75-86. https://doi.org/10.1016/j.actpsy.2019.04.008.
      Di Rosa, E., Bardi, L., Umiltà, C., Masina, F., Forgione, M., & Mapelli, D. (2017). Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account. Cortex, 93, 68-78. https://doi.org/10.1016/j.cortex.2017.05.002.
      Dixon, P. (2017). Episodic retrieval and the SNARC effect. Psychonomic Bulletin & Review, 24(6), 1943-1948. https://doi.org/10.3758/s13423-017-1253-4.
      Doricchi, F., Guariglia, P., Gasparini, M., & Tomaiuolo, F. (2005). Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nature Neuroscience, 8(12), 1663-1665. https://doi.org/10.1038/nn1563.
      Drucker, C., & Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition, 132, 57-67. https://doi.org/10.1016/j.cognition.2014.03.011.
      Eriksen, C. W. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2(2-3), 101-118. https://doi.org/10.1080/13506289508401726.
      Fan, J. (2014). An information theory account of cognitive control. Frontiers in Human Neuroscience, 8, 680. https://doi.org/10.3389/fnhum.2014.00680.
      Fattorini, E., Pinto, M., Merola, S., D'Onofrio, M., & Doricchi, F. (2016). On the instability and constraints of the interaction between number representation and spatial attention in healthy humans: A concise review of the literature and new experimental evidence. Progress in Brain Research, 227, 223-256. https://doi.org/10.1016/bs.pbr.2016.04.023.
      Fias, W., Brysbaert, M., Geypens, F., & d'Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95-110. https://doi.org/10.1080/135467996387552.
      Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555-556. https://doi.org/10.1038/nn1066.
      Fumarola, A., Prpic, V., Luccio, R., & Umiltà, C. (2020). A SNARC-like effect for music notation: The role of expertise and musical instrument. Acta Psychologica, 208, 103120. https://doi.org/10.1016/j.actpsy.2020.103120.
      Galton, F. (1880). Visualised numerals. Nature, 21(533), 252-256. https://doi.org/10.1038/021252a0.
      Georges, C. (2017). Number-space associations as indexed by the SNARC effect-Their relations to mathematical abilities and anxiety & their underlying cognitive mechanisms (Doctoral dissertation, University of Luxembourg, Luxembourgs).
      Georges, C., Hoffmann, D., & Schiltz, C. (2018). Implicit and explicit number-space associations differentially relate to interference control in young adults with ADHD. Frontiers in Psychology, 9, 775. https://doi.org/10.3389/fpsyg.2018.00775.
      Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2006). Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta Psychologica, 122(3), 221-233. https://doi.org/10.1016/j.actpsy.2005.11.004.
      Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53(1), 58-68. https://doi.org/10.1027/1618-3169.53.1.58.
      Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology: General, 139(1), 180-190. https://doi.org/10.1037/a0017688.
      Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32-44. https://doi.org/10.1037/0096-1523.32.1.32.
      Ghazi, S. R., Khan, U. A., Shahzada, G., & Ullah, K. (2014). Formal operational stage of Piaget's cognitive development theory: An implication in learning mathematics. Journal of Educational Research, 17(2), 71-84.
      Ginsburg, V., & Gevers, W. (2015). Spatial coding of ordinal information in short-and long-term memory. Frontiers in Human Neuroscience, 9(8), 1-10. https://doi.org/10.3389/fnhum.2015.00008.
      Gökaydin, D., Brugger, P., & Loetscher, T. (2018). Sequential effects in SNARC. Scientific Reports, 8(1), 1-13. https://doi.org/10.1038/s41598-018-29337-2.
      Guida, A., & Campitelli, G. (2019). Explaining the SPoARC and SNARC effects with knowledge structures: An expertise account. Psychonomic Bulletin & Review, 26(2), 434-451. https://doi.org/10.3758/s13423-019-01582-0.
      Guida, A., Fartoukh, M., & Mathy, F. (2020). The development of working memory spatialization revealed by using the cave paradigm in a two-alternative spatial choice. Annals of the New York Academy of Sciences, 1477(1), 54-70. https://doi.org/10.1111/nyas.14433.
      Gut, M., Binder, M., Finc, K., & Szeszkowski, W. (2021). Brain activity underlying response induced by SNARC-congruent and SNARC-incongruent stimuli. Acta Neurobiologiae Experimentalis, 81(2), 95-114. https://doi.org/10.21307/ane-2021-012.
      Hartmann, M., Fischer, M. H., & Mast, F. W. (2019). Sharing a mental number line across individuals? The role of body position and empathy in joint numerical cognition. Quarterly Journal of Experimental Psychology, 72(7), 1732-1740. https://doi.org/10.1177/1747021818809254.
      Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128(2), 225-237. https://doi.org/10.1016/j.actpsy.2008.01.002.
      Hesse, P. N., & Bremmer, F. (2017). The SNARC effect in two dimensions: Evidence for a frontoparallel mental number plane. Vision Research, 130, 85-96. https://doi.org/10.1016/j.visres.2016.10.007.
      Hoffmann, D., Mussolin, C., Martin, R., & Schiltz, C. (2014). The impact of mathematical proficiency on the number-space association. PLoS One, 9(1), e85048. https://doi.org/10.1371/journal.pone.0085048.
      Hoffmann, D., Pigat, D., & Schiltz, C. (2014). The impact of inhibition capacities and age on number-space associations. Cognitive Processing, 15, 329-342. https://doi.org/10.1007/s10339-014-0601-9.
      Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures (p. 22). Psychology Press.
      Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662-673. https://doi.org/10.3758/BF03195857.
      Jersild, A. T. (1927). Mental set and shift. Archives of Psychology, 14(89), 5-82.
      Kay, W. K., Francis, L. J., & Gibson, H. M. (1996). Attitude toward Christianity and the transition to formal operational thinking. British Journal of Religious Education, 19(1), 45-55. https://doi.org/10.1080/0141620960190107.
      Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48-56. https://doi.org/10.1016/j.cogbrainres.2004.12.005.
      Kramer, P., Bressan, P., & Grassi, M. (2018). The SNARC effect is associated with worse mathematical intelligence and poorer time estimation. Royal Society Open Science, 5(8), 172362. https://doi.org/10.1098/rsos.172362.
      Lachmair, M., Dudschig, C., de la Vega, I., & Kaup, B. (2014). Relating numeric cognition and language processing: Do numbers and words share a common representational platform? Acta Psychologica, 148, 107-114. https://doi.org/10.1016/j.actpsy.2013.12.004.
      Lamm, C., Bauer, H., Vitouch, O., & Gstättner, R. (1999). Differences in the ability to process a visuo-spatial task are reflected in event-related slow cortical potentials of human subjects. Neuroscience Letters, 269(3), 137-140. https://doi.org/10.1016/S0304-3940(99)00441-3.
      Leth-Steensen, C., & Citta, R. (2015). Bad-good constraints on a polarity correspondence account for the spatial-numerical association of response codes (SNARC) and markedness association of response codes (MARC) effects. Quarterly Journal of Experimental Psychology, 69(3), 482-494. https://doi.org/10.1080/17470218.2015.1055283.
      Li, J., Cao, B., Han, J., Xie, L., & Li, F. (2019). Not inertia but reconfiguration: Asymmetric switch cost in a hierarchical task. Brain Research, 1720, 146291. https://doi.org/10.1016/j.brainres.2019.06.010.
      Li, M., Zhang, E., Zhang, Y., Fanga, X., & Li, Q. (2017). Flexible verbal-spatial mapping in the horizontal and vertical SNARC effects of mainland Chinese readers. American Journal of Psychology, 130(3), 339-351. https://doi.org/10.5406/amerjpsyc.130.3.0339.
      Lindemann, O., Abolafia, J. M., Pratt, J., & Bekkering, H. (2008). Coding strategies in number space: Memory requirements influence spatial numerical associations. Quarterly Journal of Experimental Psychology, 61(4), 515-524. https://doi.org/10.1080/17470210701728677.
      MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163-203. https://doi.org/10.1037/0033-2909.109.2.163.
      Marghetis, T., & Youngstrom, K. (2014). Pierced by the number line: Integers are associated with back-to-front sagittal space. Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36), 946-951. https://escholarship.org/uc/item/7740d93z.
      Michel, C., Cavezian, C., d'Amato, T., Dalery, J., Rode, G., Saoud, M., & Rossetti, Y. (2007). Pseudoneglect in schizophrenia: A line bisection study with cueing. Cognitive Neuropsychiatry, 12(3), 222-234. https://doi.org/10.1080/13546800601033266.
      Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734.
      Nan, W., Yan, L., Yang, G., Liu, X., & Fu, S. (2022). Two processing stages of the SNARC effect. Psychological Research, 86(2), 375-385. https://doi.org/10.1007/s00426-021-01506-5.
      Nikolaev, A. R., Beck, A. K., Theobald, S., Lachmann, T., & van Leeuwen, C. (2020). Factoring in the spatial effects of symbolic number representation. Biological Psychology, 149, 107782. https://doi.org/10.1016/j.biopsycho.2019.107782.
      Notebaert, W., & Verguts, T. (2007). Dissociating conflict adaptation from feature integration: A multiple regression approach. Journal of Experimental Psychology Human Perception & Performance, 33(5), 1256-1260. https://doi.org/10.1037/0096-1523.33.5.1256.
      Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106(2), 1071-1080. https://doi.org/10.1016/j.cognition.2007.04.011.
      Nuerk, H. C., Patro, K., Cress, U., Schild, U., Friedrich, C. K., & Göbel, S. M. (2015). How space-number associations may be created in preliterate children: Six distinct mechanisms. Frontiers in Psychology, 6, 215. https://doi.org/10.3389/fpsyg.2015.00215.
      Núez-Pea, M. I., Colomé, A., & González-Gómez, B. (2021). The spatial-numerical association of response codes (SNARC) effect in highly math-anxious individuals: An ERP study. Biological Psychology, 161(5), 108062. https://doi.org/10.1016/j.biopsycho.2021.108062.
      Oesterdiekhoff, G. W. (2021). Different developmental stages and developmental ages of humans in history: Culture and socialization, open and closed developmental windows, and advanced and arrested development. The American Journal of Psychology, 134(2), 217-236. https://doi.org/10.5406/amerjpsyc.134.2.0217.
      Pfister, R., Schroeder, P. A., & Kunde, W. (2013). SNARC struggles: Instant control over spatial-numerical associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(6), 1953-1958. https://doi.org/10.1037/a0032991.
      Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. https://doi.org/10.1080/00335558008248231.
      Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. Journal of Cognitive Neuroscience, 18(4), 680-688. https://doi.org/10.1162/jocn.2006.18.4.680.
      Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416-442. https://doi.org/10.1037/0033-2909.132.3.416.
      Rasoulzadeh, V., Sahan, M. I., Van Dijck, J. P., Abrahamse, E., Marzecova, A., Verguts, T., & Fias, W. (2021). Spatial attention in serial order working memory: An EEG study. Cerebral Cortex, 31(5), 2482-2493. https://doi.org/10.1093/cercor/bhaa368.
      Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2p1), 274-278. https://doi.org/10.1037/h0028573.
      Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Does action make the link between number and space representation? Visuo-manual adaptation improves number bisection in unilateral neglect. Psychological Science, 15(6), 426-430. https://doi.org/10.1111/j.0956-7976.2004.00696.x.
      Rugani, R., Betti, S., Ceccarini, F., & Sartori, L. (2017). Act on numbers: Numerical magnitude influences selection and kinematics of finger movement. Frontiers in Psychology, 8, 1481. https://doi.org/10.3389/fpsyg.2017.01481.
      Rugani, R., Betti, S., & Sartori, L. (2018). Numerical affordance influences action execution: A kinematic study of finger movement. Frontiers in Psychology, 9, 637. https://doi.org/10.3389/fpsyg.2018.00637.
      Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans' mental number line. Science, 347(6221), 534-536. https://doi.org/10.1126/science.aaa1379.
      Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2020). Numerical magnitude, rather than individual bias, explains spatial numerical association in newborn chicks. eLife, 9, e54662. https://doi.org/10.7554/eLife.54662.
      Sahan, M. I., Van Dijck, J. P., & Fias, W. (2022). Eye-movements reveal the serial position of the attended item in verbal working memory. Psychonomic Bulletin & Review, 29(2), 530-540. https://doi.org/10.3758/s13423-021-02005-9.
      Sanders, A., & Lamers, J. (2002). The Eriksen flanker effect revisited. Acta Psychologica, 109(1), 41-56. https://doi.org/10.1016/S0001-6918(01)00048-8.
      Schall, J. D., Palmeri, T. J., & Logan, G. D. (2017). Models of inhibitory control. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1718), 20160193. https://doi.org/10.1098/rstb.2016.0193.
      Schliephake, A., Bahnmueller, J., Willmes, K., & Moeller, K. (2021). Cognitive control in number processing: New evidence from task switching. Psychological Research, 85(7), 2578-2587. https://doi.org/10.1007/s00426-020-01418-w.
      Schroeder, P. A., Pfister, R., Kunde, W., Nuerk, H. C., & Plewnia, C. (2016). Counteracting implicit conflicts by electrical inhibition of the prefrontal cortex. Journal of Cognitive Neuroscience, 28(11), 1737-1748. https://doi.org/10.1162/jocn_a_01001.
      Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Attention, Perception, & Psychophysics, 66(4), 651-664. https://doi.org/10.3758/BF03194909.
      Shaki, S., & Fischer, M. H. (2008). Reading space into numbers-A cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590-599. https://doi.org/10.1016/j.cognition.2008.04.001.
      Shaki, S., & Fischer, M. H. (2018). Deconstructing spatial-numerical associations. Cognition, 175, 109-113. https://doi.org/10.1016/j.cognition.2018.02.022.
      Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328-331. https://doi.org/10.3758/PBR.16.2.328.
      Shenhav, A., Botvinick, M., & Cohen, J. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217-240. https://doi.org/10.1016/j.neuron.2013.07.007.
      Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. Advances in Psychology, 65, 31-86. https://doi.org/10.1016/S0166-4115(08)61218-2.
      Sixtus, E., Lonnemann, J., Fischer, M. H., & Werner, K. (2019). Mental number representations in 2D space. Frontiers in Psychology, 10, 172. https://doi.org/10.3389/fpsyg.2019.00172.
      Stürmer, B., Leuthold, H., Soetens, E., SchröTer, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology Human Perception & Performance, 28(6), 1345-1363. https://doi.org/10.1037/0096-1523.28.6.1345.
      Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662. https://doi.org/10.1037/h0054651.
      Tan, S., & Dixon, P. (2011). Repetition and the SNARC effect with one- and two-digit numbers. Canadian Joumal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 65(2), 84-97. https://doi.org/10.1037/a0022368.
      Toomarian, E. Y., Meng, R., & Hubbard, E. M. (2019). Individual differences in implicit and explicit spatial processing of fractions. Frontiers in Psychology, 10, 596. https://doi.org/10.3389/fpsyg.2019.00596.
      Van den Bussche, E., Vanmeert, K., Aben, B., & Sasanguie, D. (2020). Too anxious to control: The relation between math anxiety and inhibitory control processes. Scientific Reports, 10, 19922. https://doi.org/10.1038/s41598-020-76920-7.
      Van Dijck, J. P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. Quarterly Journal of Experimental Psychology, 67(8), 1500-1513. https://doi.org/10.1080/17470218.2014.903984.
      Van Dijck, J. P., & Doricchi, F. (2019). Multiple left-to-right spatial representations of number magnitudes? Evidence from left spatial neglect. Experimental Brain Research, 237(4), 1031-1043. https://doi.org/10.1007/s00221-019-05483-5.
      Van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119. https://doi.org/10.1016/j.cognition.2010.12.013.
      Van Dijck, J. P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113(2), 248-253. https://doi.org/10.1016/j.cognition.2009.08.005.
      Vicovaro, M., & Dalmaso, M. (2020). Is ‘heavy’ up or down? Testing the vertical spatial representation of weight. Psychological Research, 85(3), 1183-1200. https://doi.org/10.1007/s00426-020-01309-0.
      Weis, T., Nuerk, H. C., & Lachmann, T. (2018). Attention allows the SNARC effect to operate on multiple number lines. Scientific Reports, 8, 13778. https://doi.org/10.1038/s41598-018-32174-y.
      Wendt, M., Kiesel, A., Mathew, H., Luna-Rodriguez, A., & Jacobsen, T. (2013). Irrelevant stimulus processing when switching between tasks. Zeitschrift für Psychologie, 221(1), 41-50. https://doi.org/10.1027/2151-2604/a000129.
      Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience & Biobehavioral Reviews, 57, 209-219. https://doi.org/10.1016/j.neubiorev.2015.09.005.
      Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50(4), 489-525.
      Wu, H., Yang, X., Geng, L., Zhu, X., & Chen, Y. (2020). How do working memory and inhibition contribute to the SNARC effect in Chinese school-aged children? Cognitive Development, 56, 100959. https://doi.org/10.1016/j.cogdev.2020.100959.
      Xie, L., Ren, M., Cao, B., & Li, F. (2017). Distinct brain responses to different inhibitions: Evidence from a modified flanker task. Scientific Reports, 7, 6657. https://doi.org/10.1038/s41598-017-04907-y.
      Yan, L., Yang, G., Nan, W., Liu, X., & Fu, S. (2021). The SNARC effect occurs in the response-selection stage. Acta Psychologica, 215, 103292. https://doi.org/10.1016/j.actpsy.2021.103292.
      Yu, S., Li, B., Zhang, M., Gong, T., Li, X., Li, Z., Gao, X., Zhang, S., Jiang, T., & Chen, C. (2020). Automaticity in processing spatial-numerical associations: Evidence from a perceptual orientation judgment task of Arabic digits in frames. PLoS One, 15(2), e0229130. https://doi.org/10.1371/journal.pone.0229130.
      Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1), 165-190. https://doi.org/10.1163/1568537054068660.
      Zhang, P., Cao, B., & Li, F. (2021). SNARC effect modulated by central executive control: Revealed in a cue-based trisection task. Psychological Research, 85(6), 2223-2236. https://doi.org/10.1007/s00426-020-01407-z.
      Zhao, L., Bai, Y., Ma, J., & Wang, Y. (2015). Local control mechanisms of implicit and explicit conflicts. Experimental Psychology, 62(3), 153-160. https://doi.org/10.1027/1618-3169/a000281.
      Zhuo, B., Chen, Y., Zhu, M., Cao, B., & Li, F. (2021). Response variations can promote the efficiency of task switching: Electrophysiological evidence. Neuropsychologia, 156, 107828. https://doi.org/10.1016/j.neuropsychologia.2021.107828.
      Zhuo, B., Zhu, M., Cao, B., & Li, F. (2021). More change in task repetition, less cost in task switching: Behavioral and event-related potential evidence. European Journal of Neuroscience, 53(8), 2553-2566. https://doi.org/10.1111/ejn.15113.
      Zohar-Shai, B., Tzelgov, J., Karni, A., & Rubinsten, O. (2017). It does exist! A left-to-right spatial-numerical association of response codes (SNARC) effect among native Hebrew speakers. Journal of Experimental Psychology Human Perception & Performance, 43(4), 719-728. https://doi.org/10.1037/xhp0000336.
      Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417(6885), 138-139.
    • Grant Information:
      31760285 National Natural Science Foundation of China; 31860278 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: cognitive control; conflict adaptation; inhibition control; spatial-numerical association of response codes (SNARC) effect; task switching
    • Publication Date:
      Date Created: 20220817 Date Completed: 20221205 Latest Revision: 20221205
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/pchj.586
    • Accession Number:
      35975319