Innate immunity and protective effects of orally administered betaine against viral and bacterial diseases in the olive flounder Paralichthys olivaceus (Temminck & Schlegel).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9881188 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2761 (Electronic) Linking ISSN: 01407775 NLM ISO Abbreviation: J Fish Dis Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, Blackwell Scientific Publications.
    • Subject Terms:
    • Abstract:
      Sustainable methods that increase farmed fish yield while controlling infections are required to prevent economic losses in aquaculture farms. In this study, we evaluated the effects of betaine-supplemented (0%, 0.1%, 0.5%, and 1.0%) feed on the growth and immunity of the olive flounder Paralichthys olivaceus. Feed conversion ratios, post-infection cumulative mortality rates and innate immune responses were monitored. Weight gain was significantly higher with 0.5% and 1.0% than with 0% and 0.1% betaine-supplemented feed. Lysozyme activity was highest with 1.0% betaine. Respiratory burst activity was highest with 0.5% and 1.0% betaine. Serum bactericidal activity against Edwardsiella tarda was highest with 1.0% betaine (40% increase in survival rates compared with those in the control). Furthermore, serum virucidal activity against the viral haemorrhagic septicaemia virus (VHSV) was higher with 1.0% betaine than with other concentrations. With 0.5% and 1.0% betaine, the survival rates against VHSV were higher than those in the control until day 11, after which they declined. Our study suggests that betaine is a promising agent for promoting the growth of and enhancing immunity against E. tarda in olive flounders. Our findings may further contribute to developing necessary alternatives to conventional antibiotics in fish farming.
      (© 2022 John Wiley & Sons Ltd.)
    • References:
      Abdelmalek, M. F., Sanderson, S. O., Angulo, P., Soldevila-Pico, C., Liu, C., Peter, J., Keach, J., Cave, M., Chen, T., McClain, C. J., & Lindor, K. D. (2009). Betaine for nonalcoholic fatty liver disease: Results of a randomized placebo-controlled trial. Hepatology, 50, 1818-1826. https://doi.org/10.1002/hep.23239.
      Alahgholi, M., Tabeidian, S. A., Toghyani, M., & Ale Saheb Fosoul, S. S. (2014). Effect of betaine as an osmolyte on broiler chickens exposed to different levels of water salinity. Archives Animal Breeding, 57, 4. https://doi.org/10.7482/0003-9438-57-004.
      Anderson, D. P. (1992). Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annual Review of Fish Diseases, 2, 281-307. https://doi.org/10.1016/0959-8030(92)90067-8.
      Angulo, P., & Lindor, K. D. (2001). Treatment of nonalcoholic fatty liver: Present and emerging therapies. Seminars in Liver Disease, 21, 81-88. https://doi.org/10.1055/s-2001-12931.
      Batts, W. N., & Winton, J. R. (1989). Enhanced detection of infectious hematopoietic necrosis virus and other fish viruses by pretreatment of cell monolayers with polyethylene glycol. Journal of Aquatic Animal Health, 1(4), 284-290. https://doi.org/10.1577/1548-8667(1989)001<0284:EDOIHN>2.3.CO;2.
      Castro, H., Battaglia, J., & Virtanen, E. (1998). Effects of FinnStim on growth and sea water adaptation of Coho salmon. Aquaculture, 168, 423-429. https://doi.org/10.1016/S0044-8486(98)00368-8.
      Chen, P., Chen, F., & Zhou, B. (2018). Antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid in liver and brain of rats treated by D-galactose. Scientific Reports, 8, 1465. https://doi.org/10.1038/s41598-018-19732-0.
      Cheng, T. C., & Dougherty, W. J. (1989). Ultrastructural evidence for the destruction of Schistosoma mansoni sporocysts associated with elevated lysosomal enzyme levels in Biomphalaria glabrata. Journal of Parasitology, 75, 928-941. https://doi.org/10.2307/3282873.
      Cholewa, J. M., Hudson, A., Cicholski, T., Cervenka, A., Barreno, K., Broom, K., Barch, M., & Craig, S. A. S. (2018). The effects of chronic betaine supplementation on body composition and performance in collegiate females: A double-blind, randomized, placebo controlled trial. Journal of the International Society of Sports Nutrition, 15, 37. https://doi.org/10.1186/s12970-018-0243-x.
      Clarke, W. C., Virtanen, E., Blackburn, J., & Higgs, D. A. (1994). Effects of a dietary betaine/amino acid additive on growth and seawater adaptation in yearling Chinook salmon. Aquaculture, 121, 137-145. https://doi.org/10.1016/0044-8486(94)90015-9.
      Coman, G. J., Sarac, H. Z., Fielder, D., & Thorne, M. (1996). Evaluation of crystalline amino acids, betaine and AMP as food attractants of the giant tiger prawn (Penaeus monodon). Comparative Biochemistry & Physiology Part A, Molecular & Integrative Physiology, 113, 247-253. https://doi.org/10.1016/0300-9629(96)00031-X.
      Craig, S. A. S. (2004). Betaine in human nutrition. American Journal of Clinical Nutrition, 80, 539-549. https://doi.org/10.1093/ajcn/80.3.539.
      Dawood, M. A. O. (2016). Effect of various feed additives on the performance of aquatic animals. Doctoral dissertation. Kagoshima University, Japan.
      Dong, X., Dong, X., Xue, W., Hua, J., Hang, Y., Sun, L., Miao, S., Wei, W., Wu, X., & Du, X. (2018). Effects of dietary betaine in allogynogenetic gibel carp (Carassius auratus gibelio): Enhanced growth, reduced lipid deposition and depressed lipogenic gene expression. Aquaculture Research, 49, 1967-1972. https://doi.org/10.1111/are.13652.
      Felix, N., & Sudharsan, M. (2004). Effect of glycine betaine, a feed attractant affecting growth and feed conversion of juvenile freshwater prawn Macrobrachium rosenbergii. Aquaculture Nutrition, 10, 193-197. https://doi.org/10.1111/j.1365-2095.2004.00292.x.
      Fredette, M., Batt, J., & Castell, J. (2000). Feeding stimulant for juvenile winter flounders. North American Journal of Aquaculture, 62, 157-160. https://doi.org/10.1577/1548-8454(2000)062<0157:FSFJWF>2.0.CO;2.
      Genc, M. A., Tekelioglu, N., Yilmaz, E., Hunt, A. O., & Yanar, Y. (2006). Effect of dietary betaine on growth performance and body composition of Oreochromis aureus reared in fresh and sea water: A comparative study. Journal of Animal Veterinary Advances, 5, 1185-1188.
      Gillette, R., Huang, R. C., Hatcher, N., & Moroz, L. L. (2000). Cost-benefit analysis potential in feeding behavior of a predatory snail by integration of hunger, taste, and pain. Proceedings of the National Academy of Sciences of the United States of America, 97, 3585-3590. https://doi.org/10.1073/pnas.97.7.3585.
      Goh, Y., & Tamura, T. (1980). Effect of amino acids on the feeding behaviour in red sea bream. Comparative Biochemistry & Physiology Part A, Molecular & Integrative Physiology, 66, 225-229. https://doi.org/10.1016/0306-4492(80)90131-8.
      He, S., Zhao, S., Dai, S., Liu, D., & Bokhari, S. G. (2015). Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Animal Science Journal, 86, 897-903. https://doi.org/10.1111/asj.12372.
      Heidari, R., Niknahad, H., Sadeghi, A., Mohammadi, H., Ghanbarinejad, V., Ommati, M. M., Hosseini, A., Azarpira, N., Khodaei, F., Farshad, O., Rashidi, E., Siavashpour, A., Najibi, A., Ahmadi, A., & Jamshidzadeh, A. (2018). Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomedicine & Pharmacotherapy, 103, 75-86. https://doi.org/10.1016/j.biopha.2018.04.010.
      Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49(8), 1248-1253. https://doi.org/10.1086/605667.
      Hidaka, I., Ohsugi, T., & Kubomatsu, T. (1978). Taste receptor stimulation and feeding behaviour in the puffer, Fugu pardalis I. Effect of single chemicals. Chemical Senses, 3, 341-354. https://doi.org/10.1093/chemse/3.4.341.
      Huang, Q. C., Xu, Z. R., Han, X. Y., & Li, W. F. (2006). Changes in hormones, growth factor and lipid metabolism in finishing pigs fed betaine. Livestock Science, 105, 78-85. https://doi.org/10.1016/j.livsci.2006.04.031.
      Ji, C., & Kaplowitz, N. (2003). Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology, 124, 1488-1499. https://doi.org/10.1016/s0016-5085(03)00276-2.
      Kang, Y. J., Choi, S. H., & Kim, K. H. (2014). Preventive and therapeutic effects of auxotrophic Edwardsiella tarda mutant harboring CpG 1668 motif-enriched plasmids against scuticociliatosis in olive flounder (Paralichthys olivaceus). Experimental Parasitology, 144, 34-38. https://doi.org/10.1016/j.exppara.2014.06.007.
      Kang, Y. J., & Kim, K. H. (2012). Effect of CpG-ODNs belonging to different classes on resistance of olive flounder (Paralichthys olivaceus) against viral hemorrhagic septicemia virus (VHSV) and Miamiensis avidus (Ciliata; Scuticociliatia) infections. Aquaculture, 324, 39-43. https://doi.org/10.1016/j.aquaculture.2011.11.008.
      Kasper, C. S., White, M. R., & Brown, P. B. (2002). Betaine can replace choline in diets for juvenile Nile tilapia, Oreochromis niloticus. Aquaculture, 205, 119-126. https://doi.org/10.1016/S0044-8486(01)00658-5.
      Kathirvel, E., Morgan, K., Nandgiri, G., Sandoval, B. C., Caudill, M. A., Bottiglieri, T., French, S. W., & Morgan, T. R. (2010). Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: A potential mechanism for hepatoprotection by betaine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299, G1068-G1077. https://doi.org/10.1152/ajpgi.00249.2010.
      Kawashima, S. (1969). Effect of the betaine citrate on the fat metabolism of the regenerating liver. Gastroenterologia Japonica, 4, 208-209. https://doi.org/10.1007/BF02799934.
      Kettunen, H., Tiihonen, K., Peuranen, S., Saarinen, M. T., & Remus, J. C. (2001). Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comparative Biochemistry & Physiology Part A, Molecular & Integrative Physiology, 130, 759-769. https://doi.org/10.1016/s1095-6433(01)00410-x.
      Kim, D. H., Sung, B., Kang, Y. J., Jang, J. Y., Hwang, S. Y., Lee, Y., Kim, M., Im, E., Yoon, J. H., Kim, C. M., Chung, H. Y., & Kim, N. D. (2014). Anti-inflammatory effects of betaine on AOM/DSS-induced colon tumorigenesis in ICR male mice. International Journal of Oncology, 45, 1250-1256. https://doi.org/10.3892/ijo.2014.2515.
      Lee, S. Y., & Ko, K. S. (2016). Protective effects of s-adenosylmethionine and its combinations with taurine and/or betaine against lipopolysaccharide or polyinosinic-polycytidylic acid-induced acute hepatotoxicity. Journal of Cancer Prevention, 21, 152-163. https://doi.org/10.15430/JCP.2016.21.3.152.
      Leng, Z., Fu, Q., Yang, X., Ding, L., Wen, C., & Zhou, Y. (2016). Increased fatty acid β-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers. Animal Science Journal, 87, 1005-1010. https://doi.org/10.1111/asj.12524.
      Li, S., Xu, S., Zhao, Y., Wang, H., & Feng, J. (2020). Dietary betaine addition promotes hepatic cholesterol synthesis, bile acid conversion, and export in rats. Nutrients, 12, 1399. https://doi.org/10.3390/nu12051399.
      Lim, L. S., Chor, W. K., Tuzan, A. D., Shapawi, R., & Kawamura, G. (2016). Betaine is a feed enhancer for juvenile grouper (Epinephelus fuscoguttatus) as determined behaviourally. Journal of Applied Animal Research, 44, 415-418. https://doi.org/10.1080/09712119.2015.1091329.
      Lim, S.-J., & Lee, K.-J. (2008). Supplemental iron and phosphorus increase dietary inclusion of cottonseed and soybean meal in olive flounder (Paralichthys olivaceus). Aquaculture Nutrition, 14, 423-430. https://doi.org/10.1111/j.1365-2095.2007.00546.x.
      Luo, Z., Tan, X.-Y., Liu, X.-J., & Wen, H. (2011). Effect of dietary betaine levels on growth performance and hepatic intermediary metabolism of GIFT strain of Nile tilapia Oreochromis niloticus reared in freshwater. Aquaculture Nutrition, 17, 361-367. https://doi.org/10.1111/j.1365-2095.2010.00805.x.
      Mäkelä, P. (2004). Agro-industrial uses of glycinebetaine. Sugar Tech, 6, 207-212. https://doi.org/10.1007/BF02942500.
      McDevitt, R. M., Mack, S., & Wallis, I. R. (2000). Can betaine partially replace or enhance the effect of methionine by improving broiler growth and carcase characteristics? British Poultry Science, 41, 473-480. https://doi.org/10.1080/713654957.
      Miglio, F., Rovati, L. C., Santoro, A., & Setnikar, I. (2000). Efficacy and safety of oral betaine glucuronate in non-alcoholic steatohepatitis. A double-blind, randomized, parallel-group, placebo-controlled prospective clinical study. Arzneimittel-Forschung, 50, 722-727. https://doi.org/10.1055/s-0031-1300279.
      Murthy, H., & S. (2016). Effect of betaine hydrochloride as feed attractant on growth, survival and feed utilization of common carp, Cyprinus carpio. Journal of Aquaculture & Marine Biology, 4, 83. https://doi.org/10.15406/jamb.2016.04.00083.
      Oh, E. G., Son, K. T., Yu, H., Lee, T. S., Lee, H. J., Shin, S., Kwon, J. Y., Park, K., & Kim, J. (2011). Antimicrobial resistance of Vibrio parahaemolyticus and vibrio alginolyticus strains isolated from farmed fish in Korea from 2005 through 2007. Journal of Food Protection, 74, 380-386. https://doi.org/10.4315/0362-028x.jfp-10-307.
      Papatryphon, E., & Soares, J. H., Jr. (2001). Optimizing the levels of feeding stimulants for use in high-fish meal and plant feedstuff-based diets for striped bass, Morone saxatilis. Aquaculture, 202, 279-288. https://doi.org/10.1016/S0044-8486(01)00778-5.
      Polat, A., & Beklevik, G. (1999). The importance of betaine and some attractive substances as fish feed additives. Cahiers Options Méditerranéennes, 37, 217-220.
      Rahimabadi, E. Z., Akbari, M., Arshadi, A., & Effatpanah, E. (2012). Effect of different levels of dietary betaine on growth performance, food efficiency and survival rate of pike perch (Sander lucioperca) fingerlings. Iranian Journal of Fisheries Sciences, 11, 902-910. https://doi.org/10.22092/ijfs.2018.114252.
      Scott, M. L. (1986). Nutrition of humans and selected animal species. John Wiley & Sons.
      Seibel, B. A., & Walsh, P. J. (2002). Trimethylamine oxide accumulation in marine animals: Relationship to acylglycerol storage. Journal of Experimental Biology, 205, 297-306. https://doi.org/10.1242/jeb.205.3.297.
      Seong, H. J., Kim, J. J., Kim, T., Ahn, S. J., Rho, M., & Sul, W. J. (2021). A case study on the distribution of the environmental resistome in Korean shrimp farms. Ecotoxicology and Environmental Safety, 227, 112858. https://doi.org/10.1016/j.ecoenv.2021.112858.
      Shankar, R., Murthy, S., Pavadi, P., & Thanuja, K. (2008). Effect of betaine as a feed attractant on growth, survival, and feed utilization in fingerlings of the Indian major carp, Labeo rohita. Israeli Journal of Aquaculture - Bamidgeh, 60, 95-99. https://doi.org/10.46989/001c.20482.
      Sheard, N. F., & Zeisel, S. H. (1989). Choline: An essential dietary nutrient? Nutrition, 5, 1-5. https://doi.org/10.1111/j.1753-4887.2009.00246.x.
      Shin, S. P., Sohn, H. C., Jin, C. N., Kang, B. J., & Lee, J. (2018). Molecular diagnostics for verifying an etiological agent of emaciation disease in cultured olive flounder Paralichthys olivaceus in Korea. Aquaculture, 493, 18-25. https://doi.org/10.1016/j.aquaculture.2018.04.041.
      Tharaka, K., Benitez-Santana, T., Gunathilaka, B. E., Kim, M. G., Lee, C., Shin, J., & Lee, K. J. (2020). Evaluation of Antarctic krill (Euphausia superba) meal supplementation in diets for olive flounder (Paralichthys olivaceus). Aquaculture Research, 51, 2291-2302. https://doi.org/10.1111/are.14573.
      Tiril, S. U., Alagil, F., Yagci, F. B., & Aral, O. (2008). Effects of betaine supplementation in plant protein based diets on feed intake and growth performance in rainbow trout (Oncorhynchus mykiss). Israeli Journal of Aquaculture - Bamidgeh, 60, 57-64. https://doi.org/10.46989/001c.20469.
      Virtanen, E., Hole, R., Resink, J. W., Slinning, K. E., & Junnila, M. (1994). Betaine/amino acid additive enhances the seawater performance of rainbow trout (Oncorhynchus mykiss) fed standard fish-meal-based diets. Aquaculture, 124, 220. https://doi.org/10.1016/0044-8486(94)90382-4.
      Wang, L., Chen, L., Tan, Y., Wei, J., Chang, Y., Jin, T., & Zhu, H. (2013). Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter. Lipids in Health and Disease, 12, 34. https://doi.org/10.1186/1476-511X-12-34.
      Wang, W. B., Wang, Y. P., Hu, W., Li, A. H., Cai, T. Z., Zhu, Z. Y., & Wang, J. G. (2006). Effects of the “all-fish” growth hormone transgene expression on non-specific immune functions of common carp, Cyprinus carpio L. Aquaculture, 259, 81-87. https://doi.org/10.1016/j.aquaculture.2006.05.016.
      Wang, Y. Z., Xu, Z. R., & Feng, J. (2004). The effect of betaine and DL-methionine on growth performance and carcass characteristics in meat ducks. Animal Feed Science and Technology, 116, 151-159. https://doi.org/10.1016/j.anifeedsci.2004.05.003.
      Wu, G., & Davis, D. A. (2005). Interrelationship among methionine, choline, and betaine in channel catfish Ictalurus punctutus. Journal of the World Aquaculture Society, 36, 337-345. https://doi.org/10.1111/j.1749-7345.2005.tb00337.x.
      Xing, J., Zhan, W. B., & Zhou, L. (2002). Endoenzymes associated with haemocyte types in the scallop (Chlamys farreri). Fish and Shellfish Immunology, 13, 271-278. https://doi.org/10.1006/fsim.2001.0402.
      Xue, M., & Cui, Y. (2001). Effect of several feeding stimulants on diet preference by juvenile gibel carp (Carassius auratus gibelio), fed diets with or without partial replacement of fish meal by meat and bone meal. Aquaculture, 198, 281-292. https://doi.org/10.1016/S0044-8486(00)00602-5.
      Yan, W. Z., & Qiu, L. Q. (1998). Effect of dietary betaine on the growth, flesh composition and digestibility of Tilapia nilotica. J. Fish. China, 22, 186-189. (in Chinese).
      Zhang, W., Wang, L. W., Wang, L. K., Li, X., Zhang, H., Luo, L. P., Song, J. C., & Gong, Z. J. (2013). Betaine protects against high-fat-diet-induced liver injury by inhibition of high-mobility group box 1 and toll-like receptor 4 expression in rats. Digestive Diseases and Sciences, 58, 3198-3206. https://doi.org/10.1007/s10620-013-2775-x.
      Zhao, Y., Yang, Q. E., Zhou, X., Wang, F. H., Muurinen, J., Virta, M. P., Brandt, K. K., & Zhu, Y. G. (2021). Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Critical Reviews in Environmental Science and Technology, 51(19), 2159-2196. https://doi.org/10.1080/10643389.2020.1777815.
      Zhu, S. Y., Dong, Y., Tu, J., Zhou, Y., Zhou, X. H., & Xu, B. (2014). Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacognosy Magazine, 10, S92-S99. https://doi.org/10.4103/0973-1296.127353.
      Zou, Q., Huang, Y., Cao, J., Zhao, H., Wang, G., Li, Y., & Pan, Q. (2017). Effects of four feeding stimulants in high plant-based diets on feed intake, growth performance, serum biochemical parameters, digestive enzyme activities and appetite-related genes expression of juvenile GIFT tilapia (Oreochromis sp.). Aquaculture Nutrition, 23, 1076-1085. https://doi.org/10.1111/anu.12475.
    • Grant Information:
      Sun Moon University
    • Contributed Indexing:
      Keywords: Edwardsiella tarda; betaine; farmed fish; innate immunity; olive flounder; pathogen infection
    • Accession Number:
      0 (Anti-Bacterial Agents)
      3SCV180C9W (Betaine)
      EC 3.2.1.17 (Muramidase)
    • Publication Date:
      Date Created: 20220808 Date Completed: 20221014 Latest Revision: 20221014
    • Publication Date:
      20240829
    • Accession Number:
      10.1111/jfd.13700
    • Accession Number:
      35934929