Investigating the Relationship between Nitrate, Total Dissolved Nitrogen, and Phosphate with Abundance of Pathogenic Vibrios and Harmful Algal Blooms in Rehoboth Bay, Delaware.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 7605801 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5336 (Electronic) Linking ISSN: 00992240 NLM ISO Abbreviation: Appl Environ Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, American Society for Microbiology.
    • Subject Terms:
    • Abstract:
      Vibrio spp. and phytoplankton are naturally abundant in marine environments. Recent studies have suggested that the co-occurrence of phytoplankton and the pathogenic bacterium Vibrio parahaemolyticus is due to shared ecological factors, such as nutrient requirements. We compared these communities at two locations in the Delaware Inland Bays, representing a site with high anthropogenic inputs (Torquay Canal) and a less developed area (Sloan Cove). In 2017 to 2018, using light microscopy, we were able to identify the presence of many bloom-forming algal species, such as Karlodinium veneficum, Dinophysis acuminata, Heterosigma akashiwo, and Chattonella subsalsa. Dinoflagellate biomass was higher at Torquay Canal than that at Sloan Cove. D. acuminata and Chloromorum toxicum were found only at Torquay Canal and were not observed in Sloan Cove. Most probable number real-time PCR revealed V. parahaemolyticus and Vibrio vulnificus in environmental samples. The abundance of vibrios and their virulence genes varied between sites, with a significant association between total dissolved nitrogen (TDN), PO 4 - , total dissolved phosphorus (TDP), and pathogenic markers. A generalized linear model revealed that principal component 1 of environmental factors (temperature, dissolved oxygen, salinity, TDN, PO 4 - , TDP, NO 3 :NO 2 , NO 2 - , and NH 4 + ) was the best at detecting total ( tlh+ ) V. parahaemolyticus, suggesting that they are the prime drivers for the growth and distribution of pathogenic Vibrio spp. IMPORTANCE Vibrio-associated illnesses have been expanding globally over the past several decades (A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, and B. E. Mahon, Clin Infect Dis 54:S391-S395, 2012, https://doi.org/10.1093/cid/cis243). Many studies have linked this expansion with an increase in global temperature (J. Martinez-Urtaza, B. C. John, J. Trinanes, and A. DePaola, Food Res Int 43:10, 2010, https://doi.org/10.1016/j.foodres.2010.04.001; L. Vezzulli, R. R. Colwell, and C. Pruzzo, Microb Ecol 65:817-825, 2013, https://doi.org/10.1007/s00248-012-0163-2; R. N. Paranjpye, W. B. Nilsson, M. Liermann, and E. D. Hilborn, FEMS Microbiol Ecol 91:fiv121, 2015, https://doi.org/10.1093/femsec/fiv121). Temperature and salinity are the two major factors affecting the distribution of Vibrio spp. (D. Ceccarelli and R. R. Colwell, Front Microbiol 5:256, 2014, https://doi.org/10.3389/fmicb.2014.00256). However, Vibrio sp. abundance can also be affected by nutrient load and marine plankton blooms (V. J. McKenzie and A. R. Townsend, EcoHealth 4:384-396, 2007; L. Vezzulli, C. Pruzzo, A. Huq, and R. R. Colwell, Environ Microbiol Rep 2:27-33, 2010, https://doi.org/10.1111/j.1758-2229.2009.00128.x; S. Liu, Z. Jiang, Y. Deng, Y. Wu, J. Zhang, et al. Microbiologyopen 7:e00600, 2018, https://doi.org/10.1002/mbo3.600). The expansion of Vibrio spp. in marine environments calls for a deeper understanding of the biotic and abiotic factors that play a role in their abundance. We observed that pathogenic Vibrio spp. were most abundant in areas that favor the proliferation of harmful algal bloom (HAB) species. These results can inform managers, researchers, and oyster growers on factors that can influence the growth and distribution of pathogenic Vibrio spp. in the Delaware Inland Bays.
    • References:
      Appl Environ Microbiol. 2005 Oct;71(10):5702-9. (PMID: 16204478)
      Appl Environ Microbiol. 2018 Jan 17;84(3):. (PMID: 29150510)
      Geohealth. 2017 Nov 28;1(9):306-317. (PMID: 32158995)
      J Eukaryot Microbiol. 2011 May-Jun;58(3):215-22. (PMID: 21518079)
      Appl Environ Microbiol. 2020 Nov 10;86(23):. (PMID: 32978135)
      J Appl Microbiol. 2014 Nov;117(5):1312-27. (PMID: 25139334)
      Appl Environ Microbiol. 2015 Sep 1;81(17):5703-13. (PMID: 26070682)
      J Phycol. 2012 Jun;48(3):569-79. (PMID: 27011072)
      Appl Environ Microbiol. 2016 Dec 30;83(2):. (PMID: 27793822)
      Int J Environ Res Public Health. 2019 Nov 07;16(22):. (PMID: 31703312)
      PLoS One. 2016 May 04;11(5):e0155018. (PMID: 27144925)
      PLoS One. 2013;8(1):e55219. (PMID: 23383115)
      Appl Environ Microbiol. 2004 Dec;70(12):7436-44. (PMID: 15574946)
      PLoS One. 2015 Apr 20;10(4):e0124148. (PMID: 25894567)
      Appl Environ Microbiol. 2015 Nov;81(21):7600-9. (PMID: 26319881)
      Appl Environ Microbiol. 2007 Sep;73(18):5840-7. (PMID: 17644647)
      Appl Environ Microbiol. 2010 Nov;76(21):7076-84. (PMID: 20817802)
      FEMS Microbiol Ecol. 2015 Dec;91(12):. (PMID: 26454066)
      Appl Environ Microbiol. 2006 Sep;72(9):6004-11. (PMID: 16957222)
      FEMS Microbiol Ecol. 2004 May 1;48(2):221-9. (PMID: 19712405)
      Appl Environ Microbiol. 2010 Feb;76(4):1290-3. (PMID: 20023076)
      Appl Environ Microbiol. 2012 Oct;78(20):7249-57. (PMID: 22865080)
      Appl Environ Microbiol. 2008 Jan;74(1):80-5. (PMID: 17993556)
      Microbiol Mol Biol Rev. 2015 Dec 23;80(1):91-138. (PMID: 26700108)
      Appl Environ Microbiol. 2017 Oct 17;83(21):. (PMID: 28842541)
      Ann Rev Mar Sci. 2017 Jan 3;9:311-335. (PMID: 27483121)
      Int J Food Microbiol. 2008 Dec 10;128(2):354-61. (PMID: 18963158)
      Front Microbiol. 2014 Feb 11;5:38. (PMID: 24575082)
      Front Microbiol. 2014 May 28;5:256. (PMID: 24904566)
      Environ Health Perspect. 2002 May;110(5):465-70. (PMID: 12003749)
      Mar Drugs. 2013 May 28;11(6):1815-35. (PMID: 23760013)
      Environ Microbiol Rep. 2010 Feb;2(1):7-18. (PMID: 23765993)
    • Contributed Indexing:
      Keywords: Delaware Inland Bays; MPN-PCR; Vibrio; harmful algal blooms; mid-Atlantic
    • Accession Number:
      0 (DNA-Binding Proteins)
      0 (Nitrates)
      0 (Phosphates)
      N762921K75 (Nitrogen)
      S7G510RUBH (Nitrogen Dioxide)
    • Publication Date:
      Date Created: 20220721 Date Completed: 20220728 Latest Revision: 20220803
    • Publication Date:
      20240829
    • Accession Number:
      PMC9317868
    • Accession Number:
      10.1128/aem.00356-22
    • Accession Number:
      35862751