Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Prebiotic synthesis and triphosphorylation of 3'-amino-TNA nucleosides.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Whitaker D;Whitaker D; Powner MW; Powner MW
- Source:
Nature chemistry [Nat Chem] 2022 Jul; Vol. 14 (7), pp. 766-774. Date of Electronic Publication: 2022 Jul 01.- Publication Type:
Journal Article; Research Support, Non-U.S. Gov't- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101499734 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-4349 (Electronic) Linking ISSN: 17554330 NLM ISO Abbreviation: Nat Chem Subsets: MEDLINE
- Publication Information: Original Publication: London : Nature Pub. Group
- Subject Terms:
- Abstract: Nucleosides are essential to the emergence of life, and so their synthesis is a key challenge for prebiotic chemistry. Although amino-nucleosides have enhanced reactivity in water compared with ribonucleosides, they are assumed to be prebiotically irrelevant due to perceived difficulties with their selective formation. Here we demonstrate that 3'-amino-TNA nucleosides (TNA, threose nucleic acid) are formed diastereoselectively and regiospecifically from prebiotic feedstocks in four high-yielding steps. Phosphate provides an unexpected resolution, leading to spontaneous purification of the genetically relevant threo-isomer. Furthermore, 3'-amino-TNA nucleosides are shown to be phosphorylated directly in water, under mild conditions with cyclic trimetaphosphate, forming a nucleoside triphosphate (NTP) in a manner not feasible for canonical nucleosides. Our results suggest 3'-amino-TNA nucleosides may have been present on the early Earth, and the ease with which these NTPs form, alongside the inherent selectivity for the Watson-Crick base-pairing threo-monomer, warrants further study of the role they could play during the emergence of life.
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.) - Comments: Comment in: Nat Chem. 2022 Jul;14(7):725-727. (PMID: 35778560)
- References: Szostak, J. W. The narrow road to the deep past: in search of the chemistry of the origin of life. Angew. Chem. Int. Ed. 56, 11037–11043 (2017). (PMID: 10.1002/anie.201704048)
Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 4, a003608 (2012). (PMID: 20739415333169810.1101/cshperspect.a003608)
Schöning, K.-U. et al. The -L-threofuranosyl-(3′→2′)-oligonucleotide system (‘TNA’): synthesis and pairing properties. Helv. Chim. Acta 85, 4111–4153 (2002). (PMID: 10.1002/hlca.200290000)
Bhowmik, S. & Krishnamurthy, R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 11, 1009–1018 (2019). (PMID: 31527850681525210.1038/s41557-019-0322-x)
Joyce, G. F., Schwartz, A. W., Miller, S. L. & Orgel, L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl Acad. Sci. USA 84, 4398–4402 (1987). (PMID: 244002030509610.1073/pnas.84.13.4398)
Fialho, D. M., Roche, T. P. & Hud, N. V. Prebiotic syntheses of noncanonical nucleosides and nucleotides. Chem. Rev. 120, 4806–4830 (2020). (PMID: 3242131610.1021/acs.chemrev.0c00069)
Becker, S., Schneider, C., Crisp, A. & Carell, T. Non-canonical nucleosides and chemistry of the emergence of life. Nat. Commun. 9, 5174 (2018). (PMID: 30538241628999710.1038/s41467-018-07222-w)
Hud, N. V. Searching for lost nucleotides of the pre-RNA World with a self-refining model of early Earth. Nat. Commun. 9, 5171 (2018). (PMID: 30538227628996610.1038/s41467-018-07389-2)
Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009). (PMID: 1923447810.1038/nrm2640)
Beier, M., Reck, F., Wagner, T., Krishnamurthy, R. & Eschenmoser, A. Chemical etiology of nucleic acid structure: comparing pentopyranosyl-(2′→4′) oligonucleotides with RNA. Science 283, 699–703 (1999). (PMID: 992403210.1126/science.283.5402.699)
Colville, B. W. F. & Powner, M. W. Selective prebiotic synthesis of α‐threofuranosyl cytidine by photochemical anomerization. Angew. Chem. Int. Ed. 60, 10526–10530 (2021). (PMID: 10.1002/anie.202101376)
Wu, X., Guntha, S., Ferencic, M., Krishnamurthy, R. & Eschenmoser, A. Base-pairing systems related to TNA: α-threofuranosyl oligonucleotides containing phosphoramidate linkages. Org. Lett. 4, 1279–1282 (2002). (PMID: 1195034210.1021/ol020015x)
Wang, Y. et al. A threose nucleic acid enzyme with RNA ligase activity. J. Am. Chem. Soc. 143, 8154–8163 (2021). (PMID: 3402825210.1021/jacs.1c02895)
Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012). (PMID: 2235443110.1038/nchem.1241)
Eschenmoser, A. The TNA-family of nucleic acid systems: properties and prospects. Orig. Life Evol. Biosph. 34, 277–306 (2004). (PMID: 1506803610.1023/B:ORIG.0000016450.59665.f4)
Whitaker, D. & Powner, M. W. Prebiotic nucleic acids need space to grow. Nat. Commun. 9, 5172 (2018). (PMID: 30538228628997210.1038/s41467-018-07221-x)
Islam, S. & Powner, M. W. Prebiotic systems chemistry: complexity overcoming clutter. Chem 2, 470–501 (2017). (PMID: 10.1016/j.chempr.2017.03.001)
Yadav, M., Kumar, R. & Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 120, 4766–4805 (2020). (PMID: 3191675110.1021/acs.chemrev.9b00546)
Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019). (PMID: 3160430510.1126/science.aax2747)
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009). (PMID: 1944421310.1038/nature08013)
Stairs, S. et al. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat. Commun. 8, 15270 (2017). (PMID: 28524845545446110.1038/ncomms15270)
Islam, S., Bučar, D.-K. & Powner, M. W. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat. Chem. 9, 584–589 (2017). (PMID: 10.1038/nchem.2703)
Ponnamperuma, C. & Woeller, F. α-Aminonitriles formed by an electric discharge through a mixture of anhydrous methane and ammonia. Curr. Mod. Biol. 1, 156–158 (1967). (PMID: 6060864)
Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015). (PMID: 25803468456831010.1038/nchem.2202)
Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019). (PMID: 3129254210.1038/s41586-019-1371-4)
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020). (PMID: 3318421610.1126/science.abd5680)
Powner, M. W., Sutherland, J. D. & Szostak, J. W. Chemoselective multicomponent one-pot assembly of purine precursors in water. J. Am. Chem. Soc. 132, 16677–16688 (2010). (PMID: 21043502298437310.1021/ja108197s)
Hein, J. E., Tse, E. & Blackmond, D. G. A route to enantiopure RNA precursors from nearly racemic starting materials. Nat. Chem. 3, 704–706 (2011). (PMID: 2186045910.1038/nchem.1108)
Powner, M. W. & Sutherland, J. D. Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. Angew. Chem. Int. Ed. 49, 4641–4643 (2010). (PMID: 10.1002/anie.201001662)
Ashe, K. et al. Selective prebiotic synthesis of phosphoroaminonitriles and aminothioamides in neutral water. Commun. Chem. 2, 23 (2019). (PMID: 10.1038/s42004-019-0124-5)
Moutou, G. et al. Equilibrium of α-aminoacetonitrile formation from formaldehyde, hydrogen cyanide and ammonia in aqueous solution: industrial and prebiotic significance. J. Phys. Org. Chem. 8, 721–730 (1995). (PMID: 10.1002/poc.610081105)
Taillades, J. & Commeyras, A. Systemes de Strecker et apparentes—I Etude de la decomposition en solution aqueuse des α-alcoyl-aminonitriles tertiaires. Mécanisme d’élimination du groupement nitrile. Tetrahedron 30, 127–132 (1974). (PMID: 10.1016/S0040-4020(01)97226-6)
Taillades, J. et al. N-carbamoyl-α-amino acids rather than free α-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides. Orig. Life Evol. Biosph. 28, 61–77 (1998). (PMID: 1153685610.1023/A:1006566810636)
Springsteen, G. & Joyce, G. F. Selective derivatization and sequestration of ribose from a prebiotic mix. J. Am. Chem. Soc. 126, 9578–9583 (2004). (PMID: 1529156110.1021/ja0483692)
Ferris, J. P., Sanchez, R. A. & Orgel, L. E. Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol. 33, 693–704 (1968). (PMID: 570041910.1016/0022-2836(68)90314-8)
Ni, G. et al. Review of α-nucleosides: from discovery, synthesis to properties and potential applications. RSC Adv. 9, 14302–14320 (2019). (PMID: 35519323906422910.1039/C9RA01399G)
Sanchez, R. A. & Orgel, L. E. Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. J. Mol. Biol. 47, 531–543 (1970). (PMID: 541817010.1016/0022-2836(70)90320-7)
Xu, J. et al. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 9, 303–309 (2017). (PMID: 2833868910.1038/nchem.2664)
Grosjean, H., de Crécy-Lagard, V. & Marck, C. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett. 584, 252–264 (2010). (PMID: 1993153310.1016/j.febslet.2009.11.052)
Ajitkumar, P. & Cherayil, J. D. Thionucleosides in transfer ribonucleic acid: diversity, structure, biosynthesis and function. Microbiol. Rev. 52, 103–113 (1988). (PMID: 328096337270710.1128/mr.52.1.103-113.1988)
Testa, S. M., Disney, M. D., Turner, D. H. & Kierzek, R. Thermodynamics of RNA-RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. Biochemistry 38, 16655–16662 (1999). (PMID: 1060012810.1021/bi991187d)
Heuberger, B. D., Pal, A., Del Frate, F., Topkar, V. V. & Szostak, J. W. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. J. Am. Chem. Soc. 137, 2769–2775 (2015). (PMID: 25654265498500010.1021/jacs.5b00445)
Prywes, N., Michaels, Y. S., Pal, A., Oh, S. S. & Szostak, J. W. Thiolated uridine substrates and templates improve the rate and fidelity of ribozyme-catalyzed RNA copying. Chem. Commun. 52, 6529–6532 (2016). (PMID: 10.1039/C6CC02692C)
Ohkubo, A. et al. Formation of new base pairs between inosine and 5-methyl-2-thiocytidine derivatives. Org. Biomol. Chem. 10, 2008–2010 (2012). (PMID: 2228169010.1039/c2ob06641f)
Kim, S. C., O’Flaherty, D. K., Zhou, L., Lelyveld, V. S. & Szostak, J. W. Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. Proc. Natl Acad. Sci. USA 115, 13318–13323 (2018). (PMID: 30509978631081910.1073/pnas.1814367115)
Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018). (PMID: 2935974710.1038/nchem.2878)
Lohrmann, R. Formation of nucleoside 5′-polyphosphates from nucleotides and trimetaphosphate. J. Mol. Evol. 6, 237–252 (1975). (PMID: 154110.1007/BF01794633)
Yamagata, Y. Prebiotic formation of ADP and ATP from AMP, calcium phosphates and cyanate in aqueous solution. Orig. Life Evol. Biosph. 29, 511–520 (1999). (PMID: 1057369110.1023/A:1006672232730)
Feldmann, W. & Thilo, E. Zur Chemie der Kondensierten Phosphate und Arsenate. XXXVIII. Amidotriphosphat. Zeitschrift Anorg. Allg. Chem. 328, 113–126 (1964). (PMID: 10.1002/zaac.19643280302)
Yamagata, Y., Watanabe, H., Saitoh, M. & Namba, T. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352, 516–519 (1991). (PMID: 1153648310.1038/352516a0)
Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. & Sulston, J. E. Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 161, 387–387 (1968). (PMID: 566129810.1126/science.161.3839.387)
Li, L. et al. Enhanced nonenzymatic RNA copying with 2-aminoimidazole activated nucleotides. J. Am. Chem. Soc. 139, 1810–1813 (2017). (PMID: 28117989632652510.1021/jacs.6b13148)
Zielinski, W. S. & Orgel, L. E. Oligomerization of activated derivatives of 3′-amino-3′-deoxyguanosine on poly(C) and poly(dC) templates. Nucleic Acids Res. 13, 2469–2484 (1985). (PMID: 400096234116910.1093/nar/13.7.2469)
Röthlingshöfer, M. et al. Chemical primer extension in seconds. Angew. Chem. Int. Ed. 47, 6065–6068 (2008). (PMID: 10.1002/anie.200801260)
Chen, J. J., Cai, X. & Szostak, J. W. N2′→P3′ phosphoramidate glycerol nucleic acid as a potential alternative genetic system. J. Am. Chem. Soc. 131, 2119–2121 (2009). (PMID: 19166350272280610.1021/ja809069b)
Blain, J. C., Ricardo, A. & Szostak, J. W. Synthesis and nonenzymatic template-directed polymerization of 2′-amino-2′-deoxythreose nucleotides. J. Am. Chem. Soc. 136, 2033–2039 (2014). (PMID: 24409991410508110.1021/ja411950n)
Zhou, L., O’Flaherty, D. K. & Szostak, J. W. Template-directed copying of RNA by non-enzymatic ligation. Angew. Chem. Int. Ed. 59, 15682–15687 (2020). (PMID: 10.1002/anie.202004934)
Hänle, E. & Richert, C. Enzyme-free replication with two or four bases. Angew. Chem. Int. Ed. 57, 8911–8915 (2018). (PMID: 10.1002/anie.201803074)
O’Flaherty, D. K., Zhou, L. & Szostak, J. W. Nonenzymatic template-directed synthesis of mixed-sequence 3′-NP-DNA up to 25 nucleotides long inside model protocells. J. Am. Chem. Soc. 141, 10481–10488 (2019). (PMID: 31180644754785410.1021/jacs.9b04858)
Saffhill, R. Selective phosphorylation of the cis-2′,3′-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chem. 35, 2881–2883 (1970). (PMID: 545052310.1021/jo00834a004)
Mullen, L. B. & Sutherland, J. D. Formation of potentially prebiotic amphiphiles by reaction of β-hydroxy-n-alkylamines with cyclotriphosphate. Angew. Chem. Int. Ed. 46, 4166–4168 (2007). (PMID: 10.1002/anie.200700394)
Krishnamurthy, R., Guntha, S. & Eschenmoser, A. Regioselective α-phosphorylation of aldoses in aqueous solution. Angew. Chem. Int. Ed. 39, 2281–2285 (2000). (PMID: 10.1002/1521-3773(20000703)39:13<2281::AID-ANIE2281>3.0.CO;2-2)
Rohatgi, R., Bartel, D. P. & Szostak, J. W. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3′−5′ phosphodiester bonds. J. Am. Chem. Soc. 118, 3340–3344 (1996). (PMID: 1153926810.1021/ja9537134) - Accession Number: 0 (Nucleic Acids)
0 (Nucleosides)
059QF0KO0R (Water) - Publication Date: Date Created: 20220701 Date Completed: 20220707 Latest Revision: 20221023
- Publication Date: 20231215
- Accession Number: 10.1038/s41557-022-00982-5
- Accession Number: 35778563
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.