Important lack of difference in tacrolimus and mycophenolic acid pharmacokinetics between Aboriginal and Caucasian kidney transplant recipients.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Science Country of Publication: Australia NLM ID: 9615568 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1440-1797 (Electronic) Linking ISSN: 13205358 NLM ISO Abbreviation: Nephrology (Carlton) Subsets: MEDLINE
    • Publication Information:
      Original Publication: Carlton, Vic., Australia : Blackwell Science,
    • Subject Terms:
    • Abstract:
      Aim: To examine whether differences in tacrolimus and mycophenolic acid (MPA) pharmacokinetics contribute to the poorer kidney transplant outcomes experienced by Aboriginal Australians.
      Methods: Concentration-time profiles for tacrolimus and MPA were prospectively collected from 43 kidney transplant recipients: 27 Aboriginal and 16 Caucasian. Apparent clearance (CL/F) and distribution volume (V/F) for each individual were derived from concentration-time profiles combined with population pharmacokinetic priors, with subsequent assessment for between-group difference in pharmacokinetics. In addition, population pharmacokinetic models were developed using the prospective dataset supplemented by previously developed structural models for tacrolimus and MPA. The change in NONMEM objective function was used to assess improvement in goodness of model fit.
      Results: No differences were found between Aboriginal and Caucasian groups or empirical Bayes estimates, for CL/F or V/F of MPA or tacrolimus. However, a higher prevalence of CYP3A5 expressers (26% compared with 0%) and wider between-subject variability in tacrolimus CL/F (SD = 5.00 compared with 3.25 L/h/70 kg) were observed in the Aboriginal group, though these differences failed to reach statistical significance (p = .07 and p = .08).
      Conclusion: There were no differences in typical tacrolimus or MPA pharmacokinetics between Aboriginal and Caucasian kidney transplant recipients. This means that Bayesian dosing tools developed to optimise tacrolimus and MPA dosing in Caucasian recipients may be applied to Aboriginal recipients. In turn, this may improve drug exposure and thereby transplant outcomes in this group. Aboriginal recipients appeared to have greater between-subject variability in tacrolimus CL/F and a higher prevalence of CYP3A5 expressers, attributes that have been linked with inferior outcomes.
      (© 2022 Asian Pacific Society of Nephrology.)
    • References:
      Barraclough KA, Grace BS, Lawton P, McDonald SP. Residential location and kidney transplant outcomes in indigenous compared with nonindigenous Australians. Transplantation. 2016;100(10):2168-2176. doi:10.1097/TP.0000000000001007.
      Mancinelli LM, Frassetto L, Floren LC, et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther. 2001;69(1):24-31. doi:10.1067/mcp.2001.113183.
      Tornatore KM, Sudchada P, Attwood K, et al. Race and drug formulation influence on mycophenolic acid pharmacokinetics in stable renal transplant recipients. J Clin Pharmacol. 2013;53(3):285-293.
      Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051-1065.
      Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration intervention--parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. Br J Clin Pharmacol. 2004;58(1):8-19. doi:10.1111/j.1365-2125.2004.02114.xBCP2114.
      Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67-76. doi:10.1007/s00467-008-0997-5.
      Taylor PJ, Brown SR, Cooper DP, et al. A high-throughput HPLC-MS/MS method for tacrolimus measurement (abstract). Ther Drug Monit. 2005;27:256.
      Keevil BG, McCann SJ, Cooper DP, Morris MR. Evaluation of a rapid micro-scale assay for tacrolimus by liquid chromatography-tandem mass spectrometry. Ann Clin Biochem. 2002;39:487-492.
      Delavenne X, Juthier L, Pons B, Mariat C, Basset T. UPLC MS/MS method for quantification of mycophenolic acid and metabolites in human plasma: application to pharmacokinetic study. Clin Chim Acta. 2011;412:59-65.
      Størset E, Holford N, Hennig S, et al. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. Br J Clin Pharmacol. 2014;78(3):509-523. doi:10.1111/bcp.12361.
      Metz DK. Optimising Immunosuppressant dosing in kidney transplantation: better outcomes through quantitative pharmacology; 2020. Accessed 7 July, 2021. http://hdl.handle.net/11343/277048.
      Holford NHG, Anderson BJ. Allometric size: the scientific theory and extension to normal fat mass. Eur J Pharm Sci. 2017;109(Suppl):S59-S64. doi:10.1016/j.ejps.2017.05.056.
      Zhao CY, Jiao Z, Mao JJ, Qiu XY. External evaluation of published population pharmacokinetic models of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol. 2016;81(5):891-907. doi:10.1111/bcp.12830.
      Zhang HX, Sheng CC, Liu LS, et al. Systematic external evaluation of published population pharmacokinetic models of mycophenolate mofetil in adult kidney transplant recipients co-administered with tacrolimus. Br J Clin Pharmacol. 2019;85(4):746-761. doi:10.1111/bcp.13850.
      Holford N, Ma G, Metz D. TDM is dead. Long live TCI! Br J Clin Pharmacol. 2022;88(4):1406-1413. doi:10.1111/bcp.14434.
      Størset E, Åsberg A, Skauby M, et al. Improved tacrolimus target concentration achievement using computerized dosing in renal transplant recipients-a prospective, randomized study. Transplantation. 2015;99(10):2158-2166.
      Fukudo M, Yano I, Shinsako K, et al. Prospective evaluation of the bayesian method for individualizing tacrolimus dose early after living-donor liver transplantation. J Clin Pharmacol. 2009;49(7):789-797. doi:10.1177/0091270009333853.
      Asberg A, Falck P, Undset LH, et al. Computer-assisted cyclosporine dosing performs better than traditional dosing in renal transplant recipients: results of a pilot study. Ther Drug Monit. 2010;32(2):152-158. doi:10.1097/FTD.0b013e3181d3f822.
      Hale MD, Nicholls AJ, Bullingham RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Therapeut. 1998;64(6):672-683.
      Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007;7(11):2496-2503. doi:10.1111/j.1600-6143.2007.01983.x.
      Metz DK, Holford N, Kausman JY, et al. Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention. Transplantation. 2019;103(10):2012-2030. doi:10.1097/tp.0000000000002762.
      Holford N. NextDose-A clinically effective web based dosing tool for target concentration intervention, World Conference on Pharmacometrics, Cape Town, South Africa, 2022.
      Limoges University Hospital Laboratory of Pharmacology. ImmunoSuppressants Bayesian dose Adjustment (ISBA). https://pharmaco.chu-limoges.fr/abis.htm.
      Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015;15(1):38-48. doi:10.1038/tpj.2014.38.
      Asempa TE, Rebellato LM, Hudson S, Briley K, Maldonado AQ. Impact of CYP3A5 genomic variances on clinical outcomes among African American kidney transplant recipients. Clin Transplant. 2018;32(1):e13162. doi:10.1111/ctr.13162.
      Van Gelder T, Meziyerh S, Swen JJ, de Vries APJ, Moes D. The clinical impact of the C(0)/D ratio and the CYP3A5 genotype on outcome in tacrolimus treated kidney transplant recipients. Front Pharmacol. 2020;11:1142. doi:10.3389/fphar.2020.01142.
      Scholten EM, Cremers SC, Schoemaker RC, et al. AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int. 2005;67(6):2440-2447. doi:10.1111/j.1523-1755.2005.00352.x.
      Kirubakaran R, Stocker SL, Hennig S, Day RO, Carland JE. Population pharmacokinetic models of tacrolimus in adult transplant recipients: a systematic review. Clin Pharmacokinet. 2020;59(11):1357-1392. doi:10.1007/s40262-020-00922-x.
      Størset E, Holford N, Midtvedt K, Bremer S, Bergan S, Åsberg A. Importance of hematocrit for a tacrolimus target concentration strategy. Eur J Clin Pharmacol. 2014;70(1):65-77. doi:10.1007/s00228-013-1584-7.
      Benkali K, Premaud A, Picard N, et al. Tacrolimus population pharmacokinetic-pharmacogenetic analysis and Bayesian estimation in renal transplant recipients. Clin Pharmacokinet. 2009;48(12):805-816.
      Woillard JB, de Winter BC, Kamar N, et al. Population pharmacokinetic model and Bayesian estimator for two tacrolimus formulations-twice daily Prograf and once daily Advagraf. Br J Clin Pharmacol. 2011;71(3):391-402.
      Zuo XC, Ng CM, Barrett JS, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet. Genom. 2013;23(5):251-261.
      Bergmann TK, Hennig S, Barraclough KA, Isbel NM, Staatz CE. Population pharmacokinetics of tacrolimus in adult kidney transplant patients: impact of CYP3A5 genotype on starting dose. Ther Drug Monit. 2014;36(1):62-70.
      Golubovic B, Vucicevic K, Radivojevic D, et al. Total plasma protein effect on tacrolimus elimination in kidney transplant patients-population pharmacokinetic approach. Eur J Pharm Sci. 2014;52:34-40.
      Vadcharavivad S, Praisuwan S, Techawathanawanna N, Treyaprasert W, Avihingsanon Y. Population pharmacokinetics of tacrolimus in Thai kidney transplant patients: comparison with similar data from other populations. J Clin Pharm Ther. 2016;41(3):310-328.
      Zhang HJ, Li DY, Zhu HJ, Fang Y, Liu TS. Tacrolimus population pharmacokinetics according to CYP3A5 genotype and clinical factors in Chinese adult kidney transplant recipients. J Clin Pharm Ther. 2017;42(4):425-432.
      Andreu F, Colom H, Elens L, et al. A new CYP3A5 × 3 and CYP3A4 × 22 cluster influencing tacrolimus target concentrations: a population approach. Clin Pharmacokinet. 2017;56(8):963-975.
      Zhu W, Xue L, Peng H, et al. Tacrolimus population pharmacokinetic models according to CYP3A5/CYP3A4/POR genotypes in Chinese Han renal transplant patients. Pharmacogenomics. 2018;19(13):1013-1025.
      Resendiz-Galvan JE, Medellin-Garibay SE, Milan-Segovia RDC, et al. Dosing recommendations based on population pharmacokinetics of tacrolimus in Mexican adult patients with kidney transplant. Basic Clin Pharmacol Toxicol. 2019;124(3):303-311.
      Andrews LM, Hesselink DA, van Schaik RHN, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol. 2019;85(3):601-615.
      Okour M, Jacobson PA, Ahmed MA, Israni AK, Brundage RC. Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure. J Clin Pharmacol. 2018;58(5):628-639. doi:10.1002/jcph.1064.
      de Winter BC, van Gelder T, Sombogaard F, et al. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. 2009;36(6):541-564. doi:10.1007/s10928-009-9136-6.
      Colom H, Andreu F, van Gelder T, et al. Prediction of free from total mycophenolic acid concentrations in stable renal transplant patients: a population-based approach. Clin Pharmacokinet. 2018;57(7):877-893. doi:10.1007/s40262-017-0603-8.
    • Grant Information:
      The Royal Australasian College of Physicians and the Australian and New Zealand Society of Nephrology; Jacquot Research Establishment Fellowship
    • Contributed Indexing:
      Keywords: Aboriginal Australian; kidney transplantation; mycophenolic acid; pharmacokinetics; tacrolimus
    • Accession Number:
      0 (Immunosuppressive Agents)
      EC 1.14.14.1 (CYP3A5 protein, human)
      EC 1.14.14.1 (Cytochrome P-450 CYP3A)
      HU9DX48N0T (Mycophenolic Acid)
      WM0HAQ4WNM (Tacrolimus)
    • Publication Date:
      Date Created: 20220621 Date Completed: 20220818 Latest Revision: 20221207
    • Publication Date:
      20221213
    • Accession Number:
      10.1111/nep.14080
    • Accession Number:
      35727904