Identification and characterization of Fe 3 O 4 /peroxodisulfate advanced oxidation products from sulfameter.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: IOS Press Country of Publication: Netherlands NLM ID: 100967627 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1001-0742 (Print) Linking ISSN: 10010742 NLM ISO Abbreviation: J Environ Sci (China) Subsets: MEDLINE
    • Publication Information:
      Publication: Amsterdam : IOS Press
      Original Publication: Beijing : Editorial Dept. of Journal of Environmental Sciences (China), 1989-
    • Subject Terms:
    • Abstract:
      Sulfonamides (SAs) are one of the most widely used antibiotics and their residuals in the environment could cause some negative environmental issues. Advanced oxidation such as Fenton-like reaction has been widely applied in the treatment of SAs polluted water. Degradation rates of 95%-99.7% were achieved in this work for the tested 8 SAs, including sulfisomidine, sulfameter (SME), phthalylsulfathiazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfisoxazole, sulfachloropyridazine, and sulfadimethoxine, in the Fe 3 O 4 /peroxodisulfate (PDS) oxidation system after the optimization of PDS concentration and pH. Meanwhile, it was found that a lot of unknown oxidation products were formed, which brought up the uncertainty of health risks to the environment, and the identification of these unknown products was critical. Therefore, SME was selected as the model compound, from which the oxidation products were never elucidated, to identify these intermediates/products. With liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS), 10 new products were identified, in which 2-amino-5-methoxypyrimidine (AMP) was confirmed by its standard. The investigation of the oxidation process of SME indicated that most of the products were not stable and the degradation pathways were very complicated as multiple reactions, such as oxidation of the amino group, SO 2 extrusion, and potential cross-reaction occurred simultaneously. Though most of the products were not verified due to the lack of standards, our results could be helpful in the evaluation of the treatment performance of SAs containing wastewater.
      (Copyright © 2022. Published by Elsevier B.V.)
    • Contributed Indexing:
      Keywords: Advanced oxidation; Degradation products; Identification; LC-HRMS/MS; Sulfonamides
    • Accession Number:
      0 (Anti-Bacterial Agents)
      0 (Sulfonamides)
      3L179F09D6 (Sulfameter)
      T034E4NS2Z (Sulfamethoxypyridazine)
    • Publication Date:
      Date Created: 20220618 Date Completed: 20220621 Latest Revision: 20220621
    • Publication Date:
      20240829
    • Accession Number:
      10.1016/j.jes.2022.02.007
    • Accession Number:
      35717087