Scoliosis and skeletal muscle mass are strongly associated with low back pain-related disability in humans: An evolutionary anthropology point of view.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8915029 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-6300 (Electronic) Linking ISSN: 10420533 NLM ISO Abbreviation: Am J Hum Biol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Blackwell
      Original Publication: New York, NY : Alan R. Liss, Inc., c1989-
    • Subject Terms:
    • Abstract:
      Objectives: To clarify the potential risk factors and etiology of low back pain (LBP)-related disability, including structural changes of the spine (spinal scoliosis) and body composition components in a population with a high prevalence of LBP.
      Methods: In this cross-sectional study, two self-reported validated questionnaires were used to collect back pain and disability data in an ethnically homogeneous family-based population sample (N = 1078). The scoliosis angle of trunk rotation was measured by a scoliometer on three spinal levels while the patient was bent forward. Body composition parameters, including relative to weight (WT), fat, relative skeletal muscle mass (SMM/WT), and total body water were determined by bioelectrical impedance analysis. Statistical analysis was conducted, accounting for the familial composition of the sample.
      Results: The mixed multiple regression analyses with several LBP-related phenotypes as dependent variables consistently showed significant independent associations with scoliosis and SMM/WT, irrespective of other covariates. The odds ratios (OR)/95% CI for scoliosis ranged between 1.40 (1.19-1.64) and 1.51 (1.27-1.80), and from 0.61(0.51-0.72), to 0.71(0.58-0.87) for SMM/WT, depending on the LBP phenotype. The genetic components of the respective correlations between the LBP-phenotypes and scoliosis or SMM/WT were negligible.
      Conclusions: The associations between LBP-related conditions and postured scoliosis and SMM/WT were consistent and significant and therefore may serve as markers in predicting the development of LBP-related disability. We interpret the origin of these correlations as the evolutionary event due to the imperfect spine anatomy adaptation to a vertical posture resulting from a quick transition to bipedalism from a quadrupedal ancestor.
      (© 2022 Wiley Periodicals LLC.)
    • References:
      Abelin-Genevois, K. (2021). Sagittal balance of the spine. Orthopaedics & Traumatology, Surgery & Research: OTSR, 107(1S), 102769.
      Balagué, F., Mannion, A. F., Pellisé, F., & Cedraschi, C. (2012). Non-specific low back pain. Lancet, 379(9814), 482-491.
      Balagué, F., & Pellisé, F. (2016). Adolescent idiopathic scoliosis and back pain. Scoliosis and Spinal Disorders, 11(1), 27.
      Bastrom, T. P., Ohashi, M., Bartley, C. E., Marks, M. C., Yaszay, B., Lonner, B. S., Sponseller, P. D., & Newton, P. O. (2021). Factors associated with increased back pain in primary thoracic adolescent idiopathic scoliosis 10 years after surgery. Spine Deformity, 10, 55-62.
      Burwell, R. G., Cole, A. A., Grivas, T. B., Kiel, W., Moulton, A., & Upadhyay, S. (1992). Pathogenesis of idiopathic scoliosis. The Nottingham concept - PubMed. Acta Orthopaedica Belgica, 58(1), 33-58.
      Butterworth, P. A., Urquhart, D. M., Cicuttini, F. M., Menz, H. B., Strauss, B. J., Proietto, J., Dixon, J. B., Jones, G., Landorf, K. B., & Wluka, A. E. (2013). Fat mass is a predictor of incident foot pain. Obesity, 21(9), E495-E499.
      Castillo, E. R., & Lieberman, D. E. (2015). Lower back pain. Evolution, Medicine, and Public Health, 2015(1), 2-3.
      Chiarotto, A., Maxwell, L. J., Terwee, C. B., Wells, G. A., Tugwell, P., & Ostelo, R. W. (2016). Roland-Morris disability questionnaire and Oswestry disability index: Which has better measurement properties for measuring physical functioning in nonspecific low Back pain? Systematic review and meta-analysis. Physical Therapy, 96(10), 1620-1637.
      Chou, R., Qaseem, A., Snow, V., Casey, D., Cross, J. T., Shekelle, P., Owens, D. K., & Clinical Efficacy Assessment Subcommittee of the American College of Physicians, American College of Physicians, & American Pain Society Low Back Pain Guidelines Panel. (2007). Diagnosis and treatment of low back pain: A joint clinical practice guideline from the American College of Physicians and the American Pain Society. Annals of Internal Medicine, 147(7), 478-491.
      Coelho, D. M., Bonagamba, G. H., & Oliveira, A. S. (2013). Scoliometer measurements of patients with idiopathic scoliosis. Brazilian Journal of Physical Therapy, 17(2), 179-184.
      Crawford, R. J., Melloh, M., Ruhli, F., & Haeusler, M.. (2016). Low back pain as a trade-off to efficient walking: A new perspective on connecting evolutionary medicine with public health. Conference: International Society for Evolution, Medicine, and Public Health. https://www.researchgate.net/publication/304942377_Low_back_pain_as_a_trade-off_to_efficient_walking_A_new_perspective_on_connecting_evolutionary_medicine_with_public_health.
      Dario, A. B., Ferreira, M. L., Refshauge, K., Sánchez-Romera, J. F., Luque-Suarez, A., Hopper, J. L., Ordoñana, J. R., & Ferreira, P. H. (2016). Are obesity and body fat distribution associated with low back pain in women? A population-based study of 1128 Spanish twins. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 25(4), 1188-1195.
      Dario, A. B., Ferreira, M. L., Refshauge, K. M., Lima, T. S., Ordoñana, J. R., & Ferreira, P. H. (2015). The relationship between obesity, low back pain, and lumbar disc degeneration when genetics and the environment are considered: A systematic review of twin studies. The Spine Journal: Official Journal of the North American Spine Society, 15(5), 1106-1117.
      Dueñas, M., Ojeda, B., Salazar, A., Mico, J. A., & Failde, I. (2016). A review of chronic pain impact on patients, their social environment and the health care system. Journal of Pain Research, 9, 457-467.
      Fadzan, M., & Bettany-Saltikov, J. (2017). Etiological theories of adolescent idiopathic scoliosis: Past and present. The Open Orthopaedics Journal, 11(1), 1466-1489.
      Falconer, D. S., Douglas S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Longman.
      Freidin, M. B., Keser, T., Gudelj, I., Štambuk, J., Vučenović, D., Allegri, M., Pavić, T., Šimurina, M., Fabiane, S. M., Lauc, G., & Williams, F. M. K. (2016). The association between low back pain and composition of IgG glycome. Scientific Reports, 6(1), 26815.
      Gilmartin-Thomas, J. F., Cicuttini, F. M., Owen, A. J., Wolfe, R., Ernst, M. E., Nelson, M. R., Lockery, J., Woods, R. L., Britt, C., Liew, D., Murray, A., Workman, B., Ward, S. A., & McNeil, J. J. (2020). Moderate or severe low back pain is associated with body mass index amongst community-dwelling older Australians. Archives of Gerontology and Geriatrics, 91, 104231.
      Gracovetsky, S. and Serge A. (1996). Function of the spine from an evolutionary perspective: The Lumbar Spine. W.B. Saunders Company: Philadelphia 1 (pp. 259-269).
      Grivas, T. B., Burwell, R. G., Kechagias, V., Mazioti, C., Fountas, A., Kolovou, D., & Christodoulou, E. (2016). Idiopathic and normal lateral lumbar curves: Muscle effects interpreted by 12th rib length asymmetry with pathomechanic implications for lumbar idiopathic scoliosis. Scoliosis and Spinal Disorders, 11(2), 40-45.
      Halonen, J. I., Shiri, R., Hanson, L. L. M., & Lallukka, T. (2019). Risk and prognostic factors of low back pain. Spine, 1, 1248-1255.
      Hellsing, A. L., & Bryngelsson, I. L. (2000). Predictors of musculoskeletal pain in men: A twenty-year follow-up from examination at enlistment. Spine, 25(23), 3080-3086.
      Hestbaek, L., Leboeuf-Yde, C., Kyvik, K. O., & Manniche, C. (2006). The course of low back pain from adolescence to adulthood: Eight-year follow-up of 9600 twins. Spine, 31(4), 468-472.
      Hussain, S. M., Urquhart, D. M., Wang, Y., Shaw, J. E., Magliano, D. J., Wluka, A. E., & Cicuttini, F. M. (2017). Fat mass and fat distribution are associated with low back pain intensity and disability: Results from a cohort study. Arthritis Research & Therapy, 19(1), 26.
      Iizuka, Y., Iizuka, H., Mieda, T., Tajika, T., Yamamoto, A., Ohsawa, T., Sasaki, T., & Takagishi, K. (2015). Association between neck and shoulder pain, back pain, low back pain and body composition parameters among the Japanese general population. BMC Musculoskeletal Disorders, 16(1), 333.
      Jéquier, E., & Constant, F. (2009). Water as an essential nutrient: The physiological basis of hydration. European Journal of Clinical Nutrition, 64(2), 115-123.
      Latalski, M., Danielewicz-Bromberek, A., Fatyga, M., Latalska, M., Kröber, M., & Zwolak, P. (2017). Current insights into the aetiology of adolescent idiopathic scoliosis. Archives of Orthopaedic and Trauma Surgery, 137(10), 1327-1333.
      Letellier, K., Azeddine, B., Blain, S., Turgeon, I., Wang, D. S., Samba Boiro, M., Moldovan, F., Labelle, H., Poitras, B., Rivard, C. H., Grimard, G., Parent, S., Ouellet, J., Lacroix, G., & Moreau, A. (2007). Etiopathogenesis of adolescent idiopathic scoliosis and new molecular concepts. Médecine Sciences, 23(11), 910-916.
      Li, Z., Zhang, Z., Ren, Y., Wang, Y., Fang, J., Yue, H., Ma, S., & Guan, F. (2021). Aging and age-related diseases: From mechanisms to therapeutic strategies. Biogerontology, 22(2), 165-187.
      Livshits, G., Cohen, Z., Higla, O., & Yakovenko, K. (2001). Familial history, age and smoking are important risk factors for disc degeneration disease in Arabic pedigrees. European Journal of Epidemiology, 17(7), 643-651.
      Livshits, G., Popham, M., Malkin, I., Sambrook, P. N., MacGregor, A. J., Spector, T., & Williams, F. M. K. (2011). Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: The UK Twin Spine Study. Annals of the Rheumatic Diseases, 70(10), 1740-1745.
      Lonner, B., Yoo, A., Terran, J. S., Sponseller, P., Samdani, A., Betz, R., Shuffelbarger, H., Shah, S. A., & Newton, P. (2013). Effect of spinal deformity on adolescent quality of life: Comparison of operative scheuermann kyphosis, adolescent idiopathic scoliosis, and normal controls. Spine, 38(12), 1049-1055.
      Lovejoy, C. O. (2005). The natural history of human gait and posture. Part 1. Spine and pelvis. Gait & Posture, 21(1), 95-112.
      Lowe, T. G., Edgar, M., Margulies, J. Y., Miller, N. H., Raso, V. J., Reinker, K. A., & Rivard, C. H. (2000). Etiology of idiopathic scoliosis: Current trends in research. The Journal of Bone and Joint Surgery, 82(8), 1157-1168.
      Ma, H. H., Tai, C. L., Chen, L. H., Niu, C. C., Chen, W. J., & Lai, P. L. (2017). Application of two-parameter scoliometer values for predicting scoliotic Cobb angle. Biomedical Engineering Online, 16(1), 1-13.
      Machida, M., Murai, I., Miyashita, Y., Dubousset, J., Yamada, T., & Kimura, J. (1999). Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine, 24(19), 1985-1989.
      Malkin, I., & Ginsburg, E. (2016). Program package for pedigree analysis (Man-2016). https://m.tau.ac.il/~idak/MAN_Manual.pdf.
      Malkin, I., Williams, F. M. K., LaChance, G., Spector, T., MacGregor, A. J., & Livshits, G. (2014). Low back and common widespread pain share common genetic determinants. Annals of Human Genetics, 78(5), 357-366.
      Menger, R. P., & Sin, A. H. (2021). Adolescent and idiopathic scoliosis. StatPearls. https://pubmed.ncbi.nlm.nih.gov/29763083/.
      Mirtz, T. A., & Greene, L. (2005). Is obesity a risk factor for low back pain? An example of using the evidence to answer a clinical question. Chiropractic & Osteopathy, 13(1), 2.
      Newton Ede, M. M. P., & Jones, S. W. (2016). Adolescent idiopathic scoliosis: Evidence for intrinsic factors driving aetiology and progression. International Orthopaedics, 40(10), 2075-2080.
      Plomp, K. A., Dobney, K., & Collard, M. (2020). Spondylolysis and spinal adaptations for bipedalism. The overshoot hypothesis. Evolution, Medicine, and Public Health, 2020(1), 35-44.
      Prowse, A., Aslaksen, B., Kierkegaard, M., Furness, J., Gerdhem, P., & Abbott, A. (2017). Reliability and concurrent validity of postural asymmetry measurement in adolescent idiopathic scoliosis. World Journal of Orthopedics, 8(1), 68-76.
      Ranger, T. A., Cicuttini, F. M., Jensen, T. S., Peiris, W. L., Hussain, S. M., Fairley, J., & Urquhart, D. M. (2017). Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. The Spine Journal: Official Journal of the North American Spine Society, 17(11), 1729-1748.
      Shemory, S. T., Pfefferle, K. J., & Gradisar, I. M. (2016). Modifiable risk factors in patients with low back pain. Orthopedics, 39(3), e413-e416.
      Sions, J. M., Coyle, P. C., Velasco, T. O., Elliott, J. M., & Hicks, G. E. (2017). Multifidi muscle characteristics and physical function among older adults with and without chronic low back pain. Archives of Physical Medicine and Rehabilitation, 98(1), 51-57.
      Smedley, J., Inskip, H., Cooper, C., & Coggon, D. (1998). Natural history of low back pain. A longitudinal study in nurses. Spine, 23(22), 2422-2426.
      Sun, X. Y., Kong, C., Zhang, T. T., Lu, S. B., Wang, W., Sun, S. Y., Guo, M. C., & Ding, J. Z. (2019). Correlation between multifidus muscle atrophy, spinopelvic parameters, and severity of deformity in patients with adult degenerative scoliosis: The parallelogram effect of LMA on the diagonal through the apical vertebra. Journal of Orthopaedic Surgery and Research, 14(1), 276.
      Tang, Y., Yang, S., Chen, C., Luo, K., Chen, Y., Wang, D., Tan, J., Dai, Q., Zhang, C., Wu, W., Xu, J., & Luo, F. (2020). Assessment of the association between paraspinal muscle degeneration and quality of life in patients with degenerative lumbar scoliosis. Experimental and Therapeutic Medicine, 20(1), 505-511.
      Tarabeih, N., Shalata, A., Trofimov, S., Kalinkovich, A., & Livshits, G. (2019). Growth and differentiation factor 15 is a biomarker for low back pain-associated disability. Cytokine, 117, 8-14.
      Tella, S. H., & Gallagher, J. C. (2014). Prevention and treatment of postmenopausal osteoporosis. Journal of Steroid Biochemistry and Molecular Biology, 142, 155-170.
      Uçar, İ., Karartı, C., Cüce, İ., Veziroğlu, E., Özüdoğru, A., Koçak, F. A., & Dadalı, Y. (2021). The relationship between muscle size, obesity, body fat ratio, pain and disability in individuals with and without nonspecific low back pain. Clinical Anatomy, 34(8), 1201-1207.
      Wong, C., Gosvig, K., & Sonne-Holm, S. (2017). The role of the paravertebral muscles in adolescent idiopathic scoliosis evaluated by temporary paralysis. Scoliosis and Spinal Disorders, 12(1), 33.
      Wu, A., March, L., Zheng, X., Huang, J., Wang, X., Zhao, J., Blyth, F. M., Smith, E., Buchbinder, R., & Hoy, D. (2020). Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the global burden of disease study 2017. Annals of Translational Medicine, 8(6), 299.
      Zhang, T.-T., Liu, Z., Liu, Y.-L., Zhao, J.-J., Liu, D.-W., & Tian, Q.-B. (2018). Obesity as a risk factor for low Back pain: A meta-analysis. Clinical Spine Surgery, 31(1), 22-27.
      Ziyatdinov, A., Vázquez-Santiago, M., Brunel, H., Martinez-Perez, A., Aschard, H., & Soria, J. M. (2018). lme4qtl: Linear mixed models with flexible covariance structure for genetic studies of related individuals. BMC Bioinformatics, 19(1), 68.
    • Publication Date:
      Date Created: 20220509 Date Completed: 20220809 Latest Revision: 20220810
    • Publication Date:
      20221213
    • Accession Number:
      10.1002/ajhb.23757
    • Accession Number:
      35533002