Green Tea Catechins, (-)-Catechin Gallate, and (-)-Gallocatechin Gallate are Potent Inhibitors of ABA-Induced Stomatal Closure.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: WILEY-VCH Country of Publication: Germany NLM ID: 101664569 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2198-3844 (Electronic) Linking ISSN: 21983844 NLM ISO Abbreviation: Adv Sci (Weinh) Subsets: MEDLINE
    • Publication Information:
      Original Publication: Weinheim : WILEY-VCH, [2014]-
    • Subject Terms:
    • Abstract:
      Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca 2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca 2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (-)-catechin gallate (CG) and (-)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K + channels which regulate K + fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca 2+ permeable cation (I Ca ) channels; and iii) cytosolic Ca 2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca 2+ -related signaling pathways. This study further supports the crucial role of I Ca channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.
      (© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.)
    • References:
      J Physiol. 2000 Jul 1;526 Pt 1:115-28. (PMID: 10878105)
      Front Plant Sci. 2020 Feb 11;11:44. (PMID: 32117382)
      Cell Calcium. 2014 Oct;56(4):285-95. (PMID: 25260713)
      J Biol Chem. 1996 Jun 28;271(26):15729-35. (PMID: 8663136)
      New Phytol. 2018 Jun;218(4):1504-1521. (PMID: 29498046)
      Biochem Pharmacol. 2005 Nov 25;70(11):1560-7. (PMID: 16216226)
      Plant Cell. 2001 Nov;13(11):2513-23. (PMID: 11701885)
      J Neurosci. 2019 Mar 13;39(11):1969-1981. (PMID: 30630881)
      Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4203-8. (PMID: 15753314)
      Plant Physiol. 2016 Jan;170(1):33-42. (PMID: 26628748)
      Science. 2000 Sep 29;289(5488):2338-42. (PMID: 11009417)
      Biochem Biophys Res Commun. 2007 Dec 21;364(3):429-35. (PMID: 17961513)
      Mol Cell. 2000 Jun;5(6):1003-11. (PMID: 10911994)
      Plant Physiol. 2021 Dec 4;187(4):1985-2004. (PMID: 33905517)
      New Phytol. 2018 Apr;218(2):414-431. (PMID: 29332310)
      Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1704-14. (PMID: 16356131)
      New Phytol. 2019 Oct;224(1):177-187. (PMID: 31179540)
      Chin Med. 2010 Apr 06;5:13. (PMID: 20370896)
      Adv Sci (Weinh). 2022 Jul;9(21):e2201403. (PMID: 35524639)
      Cell Res. 2011 Jul;21(7):1116-30. (PMID: 21445098)
      Plant Cell Physiol. 2020 Jan 1;61(1):192-202. (PMID: 31617558)
      Cold Spring Harb Protoc. 2013 Aug 01;2013(8):700-3. (PMID: 23906906)
      Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2917-21. (PMID: 11226341)
      Cell Physiol Biochem. 2021 Mar 6;55(S3):46-64. (PMID: 33667331)
      Biochem Pharmacol. 2001 Sep 1;62(5):527-35. (PMID: 11585049)
      Nature. 2020 Sep;585(7826):569-573. (PMID: 32846426)
      Science. 1992 Dec 4;258(5088):1654-8. (PMID: 8966547)
      Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1779-84. (PMID: 9990101)
      Nature. 2000 Aug 17;406(6797):731-4. (PMID: 10963598)
      Proc Natl Acad Sci U S A. 2001 May 22;98(11):6488-93. (PMID: 11344270)
      Plant Physiol. 2017 Jun;174(2):487-519. (PMID: 28408539)
      Nat Struct Mol Biol. 2010 Jan;17(1):51-6. (PMID: 20023639)
      Front Physiol. 2020 Jun 23;11:583. (PMID: 32655402)
      Am J Clin Nutr. 2017 Apr;105(4):873-881. (PMID: 28275131)
      Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
      Curr Opin Plant Biol. 2015 Dec;28:154-62. (PMID: 26599955)
      Plant J. 2010 Apr;62(2):265-76. (PMID: 20088896)
      Nature. 2001 Jun 28;411(6841):1053-7. (PMID: 11429606)
      J Neurophysiol. 1995 Jun;73(6):2448-58. (PMID: 7666151)
      Plant Physiol. 2012 Nov;160(3):1293-302. (PMID: 22932758)
      Biochem Pharmacol. 2011 Dec 15;82(12):1807-21. (PMID: 21827739)
      Elife. 2015 Jul 20;4:. (PMID: 26192964)
      Biochim Biophys Acta. 1975 Jan 31;376(1):116-25. (PMID: 1125216)
      Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4967-72. (PMID: 10781106)
      Plant J. 1995 Feb;7(2):321-32. (PMID: 7704050)
      New Phytol. 2021 Jun;230(6):2292-2310. (PMID: 33455006)
      Nature. 1993 Mar 11;362(6416):127-33. (PMID: 7680768)
      Plant J. 2009 Jul;59(2):207-20. (PMID: 19302418)
      Nat Plants. 2020 Apr;6(4):384-393. (PMID: 32231253)
      Nature. 2019 Aug;572(7767):131-135. (PMID: 31316205)
      Annu Rev Plant Biol. 2015;66:369-92. (PMID: 25665132)
      Plant J. 2021 Jan;105(2):307-321. (PMID: 33145840)
      Am J Physiol. 1993 Sep;265(3 Pt 1):C720-7. (PMID: 7692738)
      Science. 1987 Aug 14;237(4816):770-5. (PMID: 2441471)
      Plant Physiol. 2013 Oct;163(2):504-13. (PMID: 23766366)
      Card Electrophysiol Clin. 2016 Jun;8(2):385-93. (PMID: 27261829)
      Plant Physiol. 2016 Aug;171(4):2317-30. (PMID: 27252306)
      J Exp Bot. 2019 Nov 18;70(21):5985-5989. (PMID: 31738434)
      FEBS Lett. 2000 Dec 8;486(2):93-8. (PMID: 11113445)
      New Phytol. 2007;173(4):852-860. (PMID: 17286833)
      Cell. 2006 Jun 30;125(7):1347-60. (PMID: 16814720)
      Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12361-8. (PMID: 11027317)
      Trends Pharmacol Sci. 2004 May;25(5):280-9. (PMID: 15120495)
      Commun Integr Biol. 2010 Sep;3(5):468-70. (PMID: 21057643)
      Analyst. 2001 Jun;126(6):816-20. (PMID: 11445943)
      Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4778-83. (PMID: 9539815)
      Plant Methods. 2008 Feb 19;4:6. (PMID: 18284694)
      Int J Mol Sci. 2011 Jan 20;12(1):742-54. (PMID: 21340011)
      Proc Natl Acad Sci U S A. 1996 May 14;93(10):5161-5. (PMID: 8643546)
      EMBO J. 2003 Jun 2;22(11):2623-33. (PMID: 12773379)
      Plant Physiol. 2014 Nov;166(3):1090-105. (PMID: 24784133)
      Plant Signal Behav. 2010 Mar;5(3):239-46. (PMID: 20023372)
      Physiol Rev. 2012 Oct;92(4):1777-811. (PMID: 23073631)
      Plant Physiol. 2016 Aug;171(4):2731-43. (PMID: 27261063)
      Plant J. 2012 Jan;69(1):181-92. (PMID: 21910770)
      Plant Physiol. 1999 Jan;119(1):277-88. (PMID: 9880370)
      Br J Pharmacol. 2013 Mar;168(5):1059-73. (PMID: 23072320)
      Science. 2006 Apr 28;312(5773):589-92. (PMID: 16556803)
    • Grant Information:
      20KK0127 Japan Society for the Promotion of Science; 21K19060 Japan Society for the Promotion of Science; 21H05266 Japan Society for the Promotion of Science; 20K15447 Japan Society for the Promotion of Science; J200002841 Moonshot from JST; JPMJSP2114 JST SPRING; PSR2015-1779LCOLO_06 Piano di Sviluppo di Ateneo 2019 (University of Milan); PhD fellowship from the University of Milan
    • Contributed Indexing:
      Keywords: calcium oscillation; catechin gallate; drought stress; green tea; stomata
    • Accession Number:
      0 (Arabidopsis Proteins)
      0 (Tea)
      0C056HB16M (gallocatechin gallate)
      72S9A8J5GW (Abscisic Acid)
      78OW2GLG8Q (catechin gallate)
      8R1V1STN48 (Catechin)
    • Publication Date:
      Date Created: 20220507 Date Completed: 20220727 Latest Revision: 20240901
    • Publication Date:
      20240901
    • Accession Number:
      PMC9313475
    • Accession Number:
      10.1002/advs.202201403
    • Accession Number:
      35524639