Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Modeling Solution Behavior of Poly( N -isopropylacrylamide): A Comparison between Water Models.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: American Chemical Society Country of Publication: United States NLM ID: 101157530 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5207 (Electronic) Linking ISSN: 15205207 NLM ISO Abbreviation: J Phys Chem B Subsets: MEDLINE
- Publication Information:
Original Publication: Washington, D.C. : American Chemical Society, c1997-
- Subject Terms:
- Abstract:
Water is known to play a fundamental role in determining the structure and functionality of macromolecules. The same crucial contribution is also found in the in silico description of polymer aqueous solutions. In this work, we exploit the widely investigated synthetic polymer poly( N -isopropylacrylamide) (PNIPAM) to understand the effect of the adopted water model on its solution behavior and to refine the computational setup. By means of atomistic molecular dynamics simulations, we perform a comparative study of PNIPAM aqueous solution using two advanced water models: TIP4P/2005 and TIP4P/Ice. The conformation and hydration features of an atactic 30-mer at infinite dilution are probed at a range of temperature and pressure suitable to detect the coil-to-globule transition and to map the P-T phase diagram. Although both water models can reproduce the temperature-induced coil-to-globule transition at atmospheric pressure and the polymer hydration enhancement that occurs with increasing pressure, the PNIPAM-TIP4P/Ice solution shows better agreement with experimental findings. This result can be attributed to a stronger interaction of TIP4P/Ice water with both hydrophilic and hydrophobic groups of PNIPAM, as well as to a less favorable contribution of the solvent entropy to the coil-to-globule transition.
- References:
Braz J Med Biol Res. 2005 Aug;38(8):1233-8. (PMID: 16082464)
RSC Adv. 2021 Jun 22;11(36):22014-22024. (PMID: 35480797)
Phys Chem Chem Phys. 2016 Feb 14;18(6):4697-703. (PMID: 26800368)
Sci Rep. 2014 Mar 14;4:4377. (PMID: 24625553)
J Mol Biol. 1984 Sep 5;178(1):63-89. (PMID: 6548264)
Sci Adv. 2018 Sep 28;4(9):eaat5895. (PMID: 30276264)
J Phys Chem B. 2010 Dec 16;114(49):16594-604. (PMID: 21090725)
J Phys Chem B. 2011 May 19;115(19):5827-39. (PMID: 21517084)
J Am Chem Soc. 2006 Oct 11;128(40):13046-7. (PMID: 17017772)
J Chem Phys. 2020 May 29;152(20):204904. (PMID: 32486676)
J Phys Chem B. 2012 Mar 8;116(9):2651-63. (PMID: 22296566)
J Chem Phys. 2005 Jun 15;122(23):234511. (PMID: 16008466)
J Phys Chem Lett. 2019 Feb 21;10(4):870-876. (PMID: 30735054)
J Chem Inf Model. 2021 Sep 27;61(9):4521-4536. (PMID: 34406000)
J Chem Theory Comput. 2012 Apr 10;8(4):1459-70. (PMID: 26596756)
Soft Matter. 2014 Oct 7;10(37):7297-305. (PMID: 25093432)
Biophys J. 2004 Nov;87(5):3479-92. (PMID: 15347583)
Soft Matter. 2020 Feb 12;16(6):1582-1593. (PMID: 31951239)
J Colloid Interface Sci. 2021 Dec 15;604:705-718. (PMID: 34280768)
Nanoscale. 2021 Aug 21;13(31):13421-13426. (PMID: 34477747)
Phys Chem Chem Phys. 2017 May 17;19(19):11892-11903. (PMID: 28436518)
ACS Macro Lett. 2018 Oct 16;7(10):1155-1160. (PMID: 35651267)
Phys Chem Chem Phys. 2015 Nov 7;17(41):27750-7. (PMID: 26435490)
Nat Chem. 2017 May;9(5):480-486. (PMID: 28430193)
Phys Chem Chem Phys. 2017 Feb 22;19(8):5906-5916. (PMID: 28176999)
Phys Rev Lett. 2004 Dec 3;93(23):238105. (PMID: 15601210)
J Phys Chem B. 2015 Mar 5;119(9):3837-45. (PMID: 25666289)
Langmuir. 2013 Oct 1;29(39):12176-82. (PMID: 24003907)
J Phys Chem B. 2007 Feb 22;111(7):1511-3. (PMID: 17266365)
Langmuir. 2014 Oct 7;30(39):11792-801. (PMID: 25215653)
J Phys Chem B. 2009 Oct 1;113(39):12870-6. (PMID: 19725571)
J Chem Phys. 2010 Dec 21;133(23):234502. (PMID: 21186870)
Sci Rep. 2021 Jul 20;11(1):14759. (PMID: 34285274)
J Phys Chem B. 2019 Oct 17;123(41):8838-8847. (PMID: 31545046)
Macromol Rapid Commun. 2020 Jul;41(13):e2000135. (PMID: 32483937)
ACS Nano. 2021 Jan 26;15(1):614-624. (PMID: 33382598)
J Phys Chem B. 2016 Apr 21;120(15):3765-76. (PMID: 27031404)
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19656-7. (PMID: 24277833)
Phys Chem Chem Phys. 2018 Apr 18;20(15):9997-10010. (PMID: 29619464)
Phys Chem Chem Phys. 2017 Mar 28;19(12):8435-8446. (PMID: 28287224)
J Chem Phys. 2005 Dec 15;123(23):234505. (PMID: 16392929)
J Phys Chem B. 2016 Apr 7;120(13):3434-40. (PMID: 26991504)
J Phys Chem B. 2016 Dec 29;120(51):13184-13192. (PMID: 27976588)
Phys Chem Chem Phys. 2021 Mar 18;23(10):5984-5991. (PMID: 33666621)
J Chem Phys. 2007 Jan 7;126(1):014101. (PMID: 17212484)
J Phys Chem B. 2019 May 2;123(17):3875-3883. (PMID: 30990715)
J Phys Chem B. 2014 Apr 17;118(15):4253-60. (PMID: 24666206)
Sci Rep. 2016 Apr 21;6:24657. (PMID: 27098236)
J Am Chem Soc. 2006 Aug 9;128(31):10030-1. (PMID: 16881629)
J Chem Phys. 2021 Aug 7;155(5):054502. (PMID: 34364341)
J Phys Chem B. 2009 Apr 2;113(13):4248-56. (PMID: 19260666)
Phys Rev Lett. 1996 Sep 30;77(14):3053-3055. (PMID: 10062119)
J Chem Phys. 2017 May 21;146(19):194905. (PMID: 28527458)
- Accession Number:
0 (Acrylic Resins)
0 (Polymers)
059QF0KO0R (Water)
25189-55-3 (poly-N-isopropylacrylamide)
- Publication Date:
Date Created: 20220502 Date Completed: 20220527 Latest Revision: 20220716
- Publication Date:
20221213
- Accession Number:
PMC9150113
- Accession Number:
10.1021/acs.jpcb.2c00637
- Accession Number:
35491838
No Comments.