Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
    • Publication Information:
      Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
    • Subject Terms:
    • Abstract:
      Background: Master athletes (MAs) prove that preserving a high level of physical function up to very late in life is possible, but the mechanisms responsible for their high function remain unclear.
      Methods: We performed muscle biopsies in 15 octogenarian world-class track and field MAs and 14 non-athlete age/sex-matched controls (NA) to provide insights into mechanisms for preserving function in advanced age. Muscle samples were assessed for respiratory compromised fibers, mitochondrial DNA (mtDNA) copy number, and proteomics by liquid-chromatography mass spectrometry.
      Results: MA exhibited markedly better performance on clinical function tests and greater cross-sectional area of the vastus lateralis muscle. Proteomics analysis revealed marked differences, where most of the ~800 differentially represented proteins in MA versus NA pertained to mitochondria structure/function such as electron transport capacity (ETC), cristae formation, mitochondrial biogenesis, and mtDNA-encoded proteins. In contrast, proteins from the spliceosome complex and nuclear pore were downregulated in MA. Consistent with proteomics data, MA had fewer respiratory compromised fibers, higher mtDNA copy number, and an increased protein ratio of the cristae-bound ETC subunits relative to the outer mitochondrial membrane protein voltage-dependent anion channel. There was a substantial overlap of proteins overrepresented in MA versus NA with proteins that decline with aging and that are higher in physically active than sedentary individuals. However, we also found 176 proteins related to mitochondria that are uniquely differentially expressed in MA.
      Conclusions: We conclude that high function in advanced age is associated with preserving mitochondrial structure/function proteins, with underrepresentation of proteins involved in the spliceosome and nuclear pore complex. Whereas many of these differences in MA appear related to their physical activity habits, others may reflect unique biological (e.g., gene, environment) mechanisms that preserve muscle integrity and function with aging.
      Funding: Funding for this study was provided by operating grants from the Canadian Institutes of Health Research (MOP 84408 to TT and MOP 125986 to RTH). This work was supported in part by the Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA.
      Competing Interests: CU, SS, AL, RM, NM, MF, JM, TT, LF, RH No competing interests declared
    • References:
      Cold Spring Harb Perspect Biol. 2010 Oct;2(10):a000562. (PMID: 20630994)
      Elife. 2022 Apr 11;11:. (PMID: 35404238)
      Anal Biochem. 1984 Apr;138(1):141-3. (PMID: 6731838)
      Aging Cell. 2016 Apr;15(2):267-78. (PMID: 26685868)
      Mol Biol Cell. 2005 Mar;16(3):1543-54. (PMID: 15647377)
      J Gerontol A Biol Sci Med Sci. 2020 Jun 18;75(7):1317-1323. (PMID: 30869772)
      Sci Rep. 2015 Jan 23;5:7990. (PMID: 25612828)
      Aging Cell. 2020 Jun;19(6):e13135. (PMID: 32468656)
      Nucleic Acids Res. 2012 Sep;40(16):7916-31. (PMID: 22718972)
      Free Radic Biol Med. 2016 Sep;98:177-186. (PMID: 27033952)
      Nat Methods. 2009 May;6(5):359-62. (PMID: 19377485)
      J Lipid Res. 2018 Mar;59(3):515-530. (PMID: 29343537)
      Nat Aging. 2022 Mar;2(3):182-185. (PMID: 37118371)
      Trends Endocrinol Metab. 2015 Jun;26(6):275-86. (PMID: 25818360)
      Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3340-6. (PMID: 20164463)
      Biochem Biophys Res Commun. 2012 Jan 20;417(3):1052-7. (PMID: 22222373)
      Annu Rev Physiol. 2019 Feb 10;81:19-41. (PMID: 30216742)
      Sci Rep. 2018 Jul 16;8(1):10723. (PMID: 30013070)
      Bioinformatics. 2009 Apr 15;25(8):1091-3. (PMID: 19237447)
      Redox Biol. 2018 Oct;19:46-51. (PMID: 30107294)
      J Gerontol A Biol Sci Med Sci. 2006 Oct;61(10):1059-64. (PMID: 17077199)
      Cell Death Discov. 2020 Apr 27;6:29. (PMID: 32351716)
      Front Physiol. 2019 Mar 26;10:312. (PMID: 30971946)
      Elife. 2015 Apr 28;4:. (PMID: 25918844)
      Proteomics. 2011 May;11(10):2019-26. (PMID: 21500348)
      Nat Rev Mol Cell Biol. 2010 Jul;11(7):490-501. (PMID: 20571586)
      Hum Mol Genet. 2013 Dec 1;22(23):4739-47. (PMID: 23847047)
      Virchows Arch A Pathol Anat Histopathol. 1993;422(1):7-15. (PMID: 7679851)
      J Physiol. 2020 Sep;598(17):3691-3710. (PMID: 32539155)
      EuPA Open Proteom. 2015 Jun;7:11-19. (PMID: 25821719)
      J Proteome Res. 2013 Feb 1;12(2):594-604. (PMID: 23270375)
      J Appl Physiol (1985). 2016 Oct 1;121(4):1013-1020. (PMID: 27013605)
      Cells. 2021 Sep 29;10(10):. (PMID: 34685566)
      Cell Metab. 2014 Apr 1;19(4):630-41. (PMID: 24703695)
      Mol Cell Biol. 2012 Mar;32(6):1173-88. (PMID: 22252321)
      Aging Cell. 2017 Oct;16(5):918-933. (PMID: 28703423)
      Cell Metab. 2017 Jun 6;25(6):1374-1389.e6. (PMID: 28552492)
      Aging Cell. 2011 Oct;10(5):868-78. (PMID: 21668623)
      Front Physiol. 2020 Jan 17;10:1557. (PMID: 32009974)
      Front Physiol. 2015 Mar 24;6:85. (PMID: 25852572)
      Biochim Biophys Acta. 2016 Jan;1863(1):91-101. (PMID: 26477565)
      Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613. (PMID: 30476243)
      J Clin Invest. 2003 Nov;112(9):1351-60. (PMID: 14597761)
      Mech Ageing Dev. 2013 Sep;134(9):356-66. (PMID: 23747814)
      Biology (Basel). 2019 May 11;8(2):. (PMID: 31083586)
      Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52. (PMID: 18794531)
      Am J Hum Genet. 2006 Sep;79(3):469-80. (PMID: 16909385)
      J Physiol. 2020 Dec;598(23):5427-5451. (PMID: 32893883)
      J Physiol. 2019 Oct;597(19):5009-5023. (PMID: 31368533)
      Aging (Albany NY). 2010 Dec;2(12):914-23. (PMID: 21212461)
      Biochemistry. 2010 Jan 19;49(2):304-11. (PMID: 20000467)
      Neuromuscul Disord. 2012 Aug;22(8):690-8. (PMID: 22647770)
      Elife. 2019 Oct 23;8:. (PMID: 31642809)
      FASEB J. 2016 Feb;30(2):674-87. (PMID: 26481306)
      J Physiol. 2015 Sep 1;593(17):4011-27. (PMID: 26096818)
      J Physiol. 2016 Dec 15;594(24):7361-7379. (PMID: 27619626)
      Histochem J. 1989 Sep-Oct;21(9-10):545-55. (PMID: 2556354)
      Hum Genet. 2020 Mar;139(3):357-369. (PMID: 31834493)
      J Biol Chem. 2019 Mar 1;294(9):2977-2987. (PMID: 30683695)
      Mol Cell. 2010 Dec 22;40(6):893-904. (PMID: 21172655)
      J Lipid Res. 2016 May;57(5):767-80. (PMID: 26946540)
      Aging Cell. 2020 Apr;19(4):e13124. (PMID: 32196924)
      Cell. 2013 Sep 26;155(1):160-71. (PMID: 24055366)
    • Grant Information:
      MOP 125986 Canada CIHR; 84408 Canada CIHR
    • Contributed Indexing:
      Keywords: Master Athletes; epidemiology; exercise; frailty; global health; human; mitochondria; physical activity; proteomics; skeletal muscle
    • Accession Number:
      0 (DNA, Mitochondrial)
    • Publication Date:
      Date Created: 20220411 Date Completed: 20220511 Latest Revision: 20240830
    • Publication Date:
      20240830
    • Accession Number:
      PMC9090325
    • Accession Number:
      10.7554/eLife.74335
    • Accession Number:
      35404238