Structural basis of lipopolysaccharide maturation by the O-antigen ligase.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials 1 . The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL 2 . Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.
      (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Valvano, M. A. Export of O-specific lipopolysaccharide. Front. Biosci. 8, s452–s471 (2003). (PMID: 10.2741/107912700099)
      Ruan, X., Loyola, D. E., Marolda, C. L., Perez-Donoso, J. M. & Valvano, M. A. The WaaL O-antigen lipopolysaccharide ligase has features in common with metal ion-independent inverting glycosyltransferases. Glycobiology 22, 288–299 (2012). (PMID: 10.1093/glycob/cwr15021983211)
      Whitfield, C. & Trent, M. S. Biosynthesis and export of bacterial lipopolysaccharides. Annu. Rev. Biochem. 83, 99–128 (2014). (PMID: 10.1146/annurev-biochem-060713-03560024580642)
      Woodward, L. & Naismith, J. H. Bacterial polysaccharide synthesis and export. Curr. Opin. Struct. Biol. 40, 81–88 (2016). (PMID: 10.1016/j.sbi.2016.07.01627544430)
      Kaniuk, N. A., Vinogradov, E. & Whitfield, C. Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O antigens in the genus Salmonella: WaaL “ligase” is not the sole determinant of acceptor specificity. J. Biol. Chem. 279, 36470–36480 (2004). (PMID: 10.1074/jbc.M40136620015215252)
      Raetz, C. R., Reynolds, C. M., Trent, M. S. & Bishop, R. E. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329 (2007). (PMID: 10.1146/annurev.biochem.76.010307.145803173622002569861)
      Hong, Y. & Reeves, P. R. Model for the controlled synthesis of O-antigen repeat units involving the WaaL ligase. mSphere 1, e00074-15 (2016). (PMID: 10.1128/mSphere.00074-1527303678)
      Lundstedt, E., Kahne, D. & Ruiz, N. Assembly and maintenance of lipids at the bacterial outer membrane. Chem. Rev. 121, 5098–5123 (2020). (PMID: 10.1021/acs.chemrev.0c00587329558797981291)
      Whitfield, C., Williams, D. M. & Kelly, S. D. Lipopolysaccharide O-antigens—bacterial glycans made to measure. J. Biol. Chem. 295, 10593–10609 (2020). (PMID: 10.1074/jbc.REV120.009402324240427397119)
      Liu, B. et al. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol. Rev. 44, 655–683 (2020). (PMID: 10.1093/femsre/fuz02831778182)
      Feldman, M. F. et al. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J. Biol. Chem. 274, 35129–35138 (1999). (PMID: 10.1074/jbc.274.49.3512910574995)
      Bertani, B. & Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8 (2018).
      Schmid, J., Sieber, V. & Rehm, B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front. Microbiol. 6, 496 (2015). (PMID: 10.3389/fmicb.2015.00496260748944443731)
      Ruan, X. & Valvano, M. A. in Glycosyltransferases (ed. Brockhausen, I.) 185–197 (Springer, 2013).
      Abeyrathne, P. D., Daniels, C., Poon, K. K., Matewish, M. J. & Lam, J. S. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J. Bacteriol. 187, 3002–3012 (2005). (PMID: 10.1128/JB.187.9.3002-3012.2005158380261082828)
      Pérez, J. M., McGarry, M. A., Marolda, C. L. & Valvano, M. A. Functional analysis of the large periplasmic loop of the Escherichia coli K‐12 WaaL O‐antigen ligase. Mol. Microbiol. 70, 1424–1440 (2008). (PMID: 10.1111/j.1365-2958.2008.06490.x19019161)
      Islam, S. T., Taylor, V. L., Qi, M. & Lam, J. S. Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. mBio 1, e00189-00110 (2010). (PMID: 10.1128/mBio.00189-10)
      Nygaard, R., Kim, J. & Mancia, F. Cryo-electron microscopy analysis of small membrane proteins. Curr. Opin. Struct. Biol. 64, 26–33 (2020). (PMID: 10.1016/j.sbi.2020.05.009326038777665978)
      Dominik, P. K. & Kossiakoff, A. A. in Methods in Enzymology Vol. 557 (ed. Shukla, A. K.) 219–245 (Elsevier, 2015).
      Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 10.1038/s41586-021-03819-2342658448371605)
      Newport, T. D., Sansom, M. S. P. & Stansfeld, P. J. The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 47, D390–D397 (2019). (PMID: 10.1093/nar/gky104730418645)
      Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011). (PMID: 10.1038/nature09638212402593064491)
      Valvano, M. A. in Recent Trends in Carbohydrate Chemistry (eds Rauter, A. P. et al) 37–49 (Elsevier, 2020).
      Sjodt, M. et al. Structural coordination of polymerization and crosslinking by a SEDS–bPBP peptidoglycan synthase complex. Nature Microbiol. 5, 813–820 (2020). (PMID: 10.1038/s41564-020-0687-z)
      Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634–638 (2016). (PMID: 10.1038/nature19331275255055161649)
      Petrou, V. I. et al. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 351, 608–612 (2016). (PMID: 10.1126/science.aad1172269127034963604)
      Tavares-Carreón, F., Fathy Mohamed, Y., Andrade, A. & Valvano, M. A. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Glycobiology 26, 286–300 (2016). (PMID: 26515403)
      Napiórkowska, M. et al. Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase. Nat. Struct. Mol. Biol. 24, 1100–1106 (2017). (PMID: 10.1038/nsmb.349129058712)
      Ruan, X., Monjarás Feria, J., Hamad, M. & Valvano, M. A. Escherichia coli and Pseudomonas aeruginosa lipopolysaccharide O‐antigen ligases share similar membrane topology and biochemical properties. Mol. Microbiol. 110, 95–113 (2018). (PMID: 10.1111/mmi.1408530047569)
      Voss, N. R. & Gerstein, M. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 38, W555–W562 (2010). (PMID: 10.1093/nar/gkq395204788242896178)
      Whitney, J. & Howell, P. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol. 21, 63–72 (2013). (PMID: 10.1016/j.tim.2012.10.00123117123)
      Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006). (PMID: 10.1146/annurev.biochem.75.103004.14254516756484)
      Cuthbertson, L., Kos, V. & Whitfield, C. ABC transporters involved in export of cell surface glycoconjugates. Microbiol. Mol. Biol. Rev. 74, 341–362 (2010). (PMID: 10.1128/MMBR.00009-10208054022937517)
      Pérez-Burgos, M. et al. Characterization of the exopolysaccharide biosynthesis pathway in Myxococcus xanthus. J. Bacteriol. 202, e00335-20 (2020). (PMID: 10.1128/JB.00335-20327785577484181)
      Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017). (PMID: 10.1038/nature23649288699685759761)
      Rizk, S. S. et al. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat. Struct. Mol. Biol. 18, 437 (2011). (PMID: 10.1038/nsmb.2002213789673077571)
      Miller, K. R. et al. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment. PLoS ONE 7, e43746 (2012). (PMID: 10.1371/journal.pone.0043746229163013423377)
      Fellouse, F. A. et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J. Mol. Biol. 373, 924–940 (2007). (PMID: 10.1016/j.jmb.2007.08.00517825836)
      Punta, M. et al. Structural genomics target selection for the New York consortium on membrane protein structure. J. Struct. Funct. Genomics 10, 255–268 (2009). (PMID: 10.1007/s10969-009-9071-1198598262780672)
      Mancia, F. & Love, J. High-throughput expression and purification of membrane proteins. J. Struct. Biol. 172, 85–93 (2010). (PMID: 10.1016/j.jsb.2010.03.021203948232933282)
      Mancia, F. & Love, J. High throughput platforms for structural genomics of integral membrane proteins. Curr. Opin. Struct. Biol. 21, 517–522 (2011). (PMID: 10.1016/j.sbi.2011.07.001218074983172710)
      Bayburt, T. H., Grinkova, Y. V. & Sligar, S. G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002). (PMID: 10.1021/nl025623k)
      Denisov, I. G., Grinkova, Y. V., Lazarides, A. A. & Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487 (2004). (PMID: 10.1021/ja039357415025475)
      Kapust, R. B., Tözsér, J., Copeland, T. D. & Waugh, D. S. The P1′ specificity of tobacco etch virus protease. Biochem. Biophys. Res. Commun. 294, 949–955 (2002). (PMID: 10.1016/S0006-291X(02)00574-012074568)
      Dominik, P. K. et al. Conformational chaperones for structural studies of membrane proteins using antibody phage display with nanodiscs. Structure 24, 300–309 (2016). (PMID: 10.1016/j.str.2015.11.01426749445)
      Kim, J. et al. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature 576, 315–320 (2019). (PMID: 10.1038/s41586-019-1795-x317765166911266)
      Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005). (PMID: 10.1016/j.jsb.2005.03.01015890530)
      Slabinski, L. et al. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23, 3403–3405 (2007). (PMID: 10.1093/bioinformatics/btm47717921170)
      Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). (PMID: 10.1107/S090744490401915815572765)
      Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). (PMID: 10.1107/S0907444910007493203830022852313)
      Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo‐microscopy and crystallographic data. Protein Sci. 29, 1055–1064 (2020). (PMID: 10.1002/pro.3791)
      Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix. refine. Acta Crystallogr. D 68, 352–367 (2012). (PMID: 10.1107/S0907444912001308225052563322595)
      Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018). (PMID: 10.1107/S2059798318006551)
      Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
      Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). (PMID: 10.1002/pro.323528710774)
      Danilov, L., Druzhinina, T., Kalinchuk, N., Maltsev, S. & Shibaev, V. Polyprenyl phosphates: synthesis and structure-activity relationship for a biosynthetic system of Salmonella anatum O-specific polysaccharide. Chem. Phys. Lipids 51, 191–203 (1989). (PMID: 10.1016/0009-3084(89)90006-62611960)
      Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013). (PMID: 10.1038/nbt.2508233609653748948)
      Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR–Cas9 system. Appl. Environ. Microbiol. 81, 2506–2514 (2015). (PMID: 10.1128/AEM.04023-14256368384357945)
      Selle, K. & Barrangou, R. Harnessing CRISPR–Cas systems for bacterial genome editing. Trends Microbiol. 23, 225–232 (2015). (PMID: 10.1016/j.tim.2015.01.00825698413)
      Jiang, X. et al. Vector promoters used in Klebsiella pneumoniae. Biotechnol. Appl. Biochem. 63, 734–739 (2016). (PMID: 10.1002/bab.142326234465)
      Zhao, D. et al. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb. Cell Fact. 15, 205 (2016). (PMID: 10.1186/s12934-016-0605-5279082805134288)
      Wang, Y. et al. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl. Environ. Microbiol. 84, e01834-01818 (2018).
      McConville, T. H. et al. CrrB positively regulates high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Cell Rep. 33, 108313 (2020). (PMID: 10.1016/j.celrep.2020.108313331133777656232)
      Mijnendonckx, K. et al. Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microb. Ecol. 65, 347–360 (2013). (PMID: 10.1007/s00248-012-0139-223212653)
      Schmidt, C., Schwarzenberger, C., Große, C. & Nies, D. H. FurC regulates expression of zupT for the central zinc importer ZupT of Cupriavidus metallidurans. J. Bacteriol. 196, 3461–3471 (2014). (PMID: 10.1128/JB.01713-14250490924187674)
      Sambrook, J. & Rusell, D. Molecular Cloning: A Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, 2001).
      Baba, T. et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006). (PMID: 10.1038/msb4100050167385541681482)
      Hitchcock, P. J. & Brown, T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154, 269–277 (1983). (PMID: 10.1128/jb.154.1.269-277.19836187729217456)
      Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012). (PMID: 10.1038/nmeth.1818)
      Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017). (PMID: 10.1093/nar/gkw108127899574)
      Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004). (PMID: 10.1101/gr.84900415173120419797)
      Wu, Q. et al. Protein contact prediction using metagenome sequence data and residual neural networks. Bioinformatics 36, 41–48 (2020). (PMID: 10.1093/bioinformatics/btz47731173061)
      Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014). (PMID: 10.1093/nar/gku316247534214086106)
      Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993). (PMID: 10.1006/jmbi.1993.16268254673)
      Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). (PMID: 10.1016/j.softx.2015.06.001)
      Vogeley, L. et al. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science 351, 876–880 (2016). (PMID: 10.1126/science.aad374726912896)
      Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P. & Marrink, S. J. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory Comput. 11, 2144–2155 (2015). (PMID: 10.1021/acs.jctc.5b0020926574417)
      Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). (PMID: 10.1063/1.240842017212484)
      Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). (PMID: 10.1063/1.328693)
      Stansfeld, P. J. & Sansom, M. S. From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. J. Chem. Theory Comput. 7, 1157–1166 (2011). (PMID: 10.1021/ct100569y26606363)
      Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). (PMID: 10.1038/nmeth.406727819658)
      Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992). (PMID: 10.1002/jcc.540130805)
      Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). (PMID: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H)
      Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008). (PMID: 10.1002/jcc.2094518351591)
      Bonomi, M. et al. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 16, 670–673 (2019). (PMID: 10.1038/s41592-019-0506-8)
      Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015). (PMID: 10.1016/j.jsb.2015.08.00726296328)
      Vinés, E. D., Marolda, C. L., Balachandran, A. & Valvano, M. A. Defective O-antigen polymerization in tolA and pal mutants of Escherichia coli in response to extracytoplasmic stress. J. Bacteriol. 187, 3359–3368 (2005). (PMID: 10.1128/JB.187.10.3359-3368.2005158669201112028)
    • Grant Information:
      R35 GM132120 United States GM NIGMS NIH HHS; P41 GM116799 United States GM NIGMS NIH HHS; GM117372 United States NH NIH HHS; S009213/1 United Kingdom MRC_ Medical Research Council; R01 GM117372 United States GM NIGMS NIH HHS; R01 AI150098 United States AI NIAID NIH HHS; United Kingdom WT_ Wellcome Trust; GM132120 United States NH NIH HHS; GM116799 United States NH NIH HHS; AI150098 United States NH NIH HHS; 208361/Z/17/Z United Kingdom WT_ Wellcome Trust; MR/S009213/1 United Kingdom MRC_ Medical Research Council; MR/N002679/1 United Kingdom MRC_ Medical Research Council; T32 AI100852 United States AI NIAID NIH HHS; K08 AI146284 United States AI NIAID NIH HHS; K99 GM123228 United States GM NIGMS NIH HHS; R01 AI129940 United States AI NIAID NIH HHS; U54 DK104309 United States DK NIDDK NIH HHS; R00 GM123228 United States GM NIGMS NIH HHS; R01 AI138576 United States AI NIAID NIH HHS; AI129940 United States NH NIH HHS
    • Accession Number:
      0 (Bacterial Proteins)
      0 (Lipopolysaccharides)
      0 (O Antigens)
      EC 2.4.- (Glycosyltransferases)
      EC 6.- (Ligases)
      EC 6.1.- (Carbon-Oxygen Ligases)
    • Publication Date:
      Date Created: 20220407 Date Completed: 20220415 Latest Revision: 20240822
    • Publication Date:
      20240823
    • Accession Number:
      PMC9884178
    • Accession Number:
      10.1038/s41586-022-04555-x
    • Accession Number:
      35388216