Delay of gaze fixation during reaching movement with the non-dominant hand to a distant target.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Rand MK;Rand MK;Rand MK; Ringenbach SDR; Ringenbach SDR
  • Source:
    Experimental brain research [Exp Brain Res] 2022 May; Vol. 240 (5), pp. 1629-1647. Date of Electronic Publication: 2022 Apr 02.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer Verlag
    • Subject Terms:
    • Abstract:
      The present study examined the effects of hand and task difficulty on eye-hand coordination related to gaze fixation behavior (i.e., fixating a gaze to the target until reach completion) in single reaching movements. Twenty right-handed young adults made reaches on a digitizer, while looking at a visual target and feedback of hand movements on a computer monitor. Task difficulty was altered by having three target distances. In a small portion of trials, visual feedback was randomly removed at the target presentation. The effect of a moderate amount of practice was also examined using a randomized trial schedule across target-distance and visual-feedback conditions in each hand. The results showed that the gaze distances covered during the early reaching phase were reduced, and the gaze fixation to the target was delayed when reaches were performed with the left hand and when the target distance increased. These results suggest that when the use of the non-dominant hand or an increased task difficulty reduces the predictability of hand movements and its sensory consequences, eye-hand coordination is modified to enhance visual monitoring of the reach progress prior to gaze fixation. The randomized practice facilitated this process. Nevertheless, variability of reach trajectory was more increased without visual feedback for right-hand reaches, indicating that control of the dominant arm integrates more visual feedback information during reaches. These results together suggest that the earlier gaze fixation and greater integration of visual feedback during right-hand reaches contribute to the faster and more accurate performance in the final reaching phase.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Abekawa N, Gomi H, Diedrichsen J (2021) Gaze control during reaching is flexibly modulated to optimize task outcome. J Neurophysiol 126:816–826. (PMID: 3432084510.1152/jn.00134.2021)
      Adam JJ, Buetti S, Kerzel D (2012) Coordinated flexibility: how initial gaze position modulates eye–hand coordination and reaching. J Exp Psychol Hum Percept Perform 38:891–901. (PMID: 2239029710.1037/a0027592)
      Annett J, Annett M, Hudson PT, Turner A (1979) The control of movement in the preferred and non-preferred hands. Q J Exp Psychol 31:641–652. (PMID: 53428610.1080/14640747908400755)
      Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64:476–482. (PMID: 380348510.1007/BF00340484)
      Bock O (1993) Localization of objects in the peripheral visual field. Behav Brain Res 56:77–84. (PMID: 839785610.1016/0166-4328(93)90023-J)
      Bowman MC, Johansson RS, Flanagan JR (2009) Eye-hand coordination in a sequential target contract task. Exp Brain Res 195:273–283. (PMID: 1935784110.1007/s00221-009-1781-x)
      Carey DP (2000) Eye-hand coordination: eye to hand or hand to eye? Curr Biol 10:R416-419. (PMID: 1083724010.1016/S0960-9822(00)00508-X)
      Carey DP, Otto-de Haart EG, Buckingham G, Dijkerman HC, Hargreaves EL, Goodale MA (2015) Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals. Front Psychol 6:1203. (PMID: 26379572455182610.3389/fpsyg.2015.01203)
      Carlton LG (1981) Processing visual feedback information for movement control. J Exp Psychol Hum Percept Perform 7:1019–1032. (PMID: 645710610.1037/0096-1523.7.5.1019)
      Carson RG (1996) Putative right hemisphere contributions to the preparation of reaching and aiming movements. In: Elliott D, Roy EA (eds) Manual asymmetries in motor performance. CRC Press, Boca Raton, pp 159–172.
      Carson RG, Chua R, Elliott D, Goodman D (1990) The contribution of vision to asymmetries in manual aiming. Neuropsychologia 28:1215–1220. (PMID: 229049510.1016/0028-3932(90)90056-T)
      Carson RG, Goodman D, Elliott D (1992) Asymmetries in the discrete and pseudocontinuous regulation of visually guided reaching. Brain Cogn 18:169–191. (PMID: 157597510.1016/0278-2626(92)90077-Y)
      Carson RG, Goodman D, Chua R, Elliott D (1993) Asymmetries in the regulation of visually guided aiming. J Mot Behav 25:21–32. (PMID: 1273003810.1080/00222895.1993.9941636)
      Chua R, Elliott D (1993) Visual regulation of manual aiming. Hum Mov Sci 12:365–401. (PMID: 10.1016/0167-9457(93)90026-L)
      De Brouwer AJ, Albaghdad M, Flanagan J, Gallivan JP (2018) Using gaze behavior to parcellate the explicit and implicit contributions to visuomotor learning. J Neurophysiol 120:1602–1615. (PMID: 29995600623079810.1152/jn.00113.2018)
      Debats NB, Heuer H (2018) Sensory integration of movements and their visual effects is not enhanced by spatial proximity. J vis 18(15):1–16.
      Debats NB, Heuer H (2020) Exploring the time window for causal inference and the multisensory integration of actions and their visual effects. R Soc Open Sci 7:192056. (PMID: 32968497748168410.1098/rsos.192056)
      Debats NB, Ernst MO, Heuer H (2017) Perceptual attraction in tool-use: evidence for a reliability-based weighting mechanism. J Neurophysiol 117:1569–1580. (PMID: 28100656537660910.1152/jn.00724.2016)
      Elliott D (1988) The influence of visual target and limb information on manual aiming. Can J Psychol 42:57–68. (PMID: 316770410.1037/h0084172)
      Elliott D, Roy EA, Goodman D, Carson RG, Chua R, Maraj BKV (1993) Asymmetries in the preparation and control of manual aiming movements. Can J Exp Psychol 47:570–589. (PMID: 10.1037/h0078856)
      Elliott D, Chua R, Pollock BJ (1994) The influence of intermittent vision on manual aiming. Acta Psychol 85:1–13. (PMID: 10.1016/0001-6918(94)90016-7)
      Elliott D, Hansen S, Mendoza J, Tremblay L (2004) Learning to optimize speed, accuracy, and energy expenditure: a framework for understanding speed-accuracy relations in goal-directed aiming. J Mot Behav 36:339–351. (PMID: 1526262910.3200/JMBR.36.3.339-351)
      Elliott D, Dutoy C, Andrew M, Burkitt JJ, Grierson LEM, Lyons JL, Hayes SJ, Bennett SJ (2014) The influence of visual feedback and prior knowledge about feedback on vertical aiming strategies. J Mot Behav 46:433–443. (PMID: 2520420110.1080/00222895.2014.933767)
      Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433. (PMID: 1180755410.1038/415429a)
      Fisk JD, Goodale MA (1985) The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. Exp Brain Res 60:159–178. (PMID: 404327410.1007/BF00237028)
      Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391. (PMID: 1317471010.1037/h0055392)
      Flanagan JR, Terao Y, Johansson RS (2008) Gaze behavior when reaching to remembered targets. J Neurophysiol 100:1533–1543. (PMID: 1863288010.1152/jn.90518.2008)
      Flowers K (1975) Handedness and Controlled Movement. British J Psychol 66:39–52. (PMID: 10.1111/j.2044-8295.1975.tb01438.x)
      Gaveau V, Pélisson D, Blangero A, Urquizar C, Prablanc C, Vighetto A, Pisella L (2008) Saccade control and eye-hand coordination in optic ataxia. Neuropsychologia 46:475–486. (PMID: 1796379810.1016/j.neuropsychologia.2007.08.028)
      Goble DJ, Brown SH (2007) Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Exp Brain Res 180:693–704. (PMID: 1729754810.1007/s00221-007-0890-7)
      Goble DJ, Brown SH (2008a) Upper limb asymmetries in the matching of proprioceptive versus visual targets. J Neurophysiol 99:3063–3074. (PMID: 1843663210.1152/jn.90259.2008)
      Goble DJ, Brown SH (2008b) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610. (PMID: 1816010310.1016/j.neubiorev.2007.10.006)
      Granek JA, Pisella L, Stemberger J, Vighetto A, Rossetti Y, Sergio LE (2013) Decoupled visually-guided reaching in optic ataxia: differences in motor control between canonical and non-canonical orientations in space. PLoS ONE 8:e86138. (PMID: 24392035387739410.1371/journal.pone.0086138)
      Guiard Y (1987) Asymmetric division of labor in human skilled bimanual action: the kinematic chain as a model. J Mot Behav 19:486–517. (PMID: 1513627410.1080/00222895.1987.10735426)
      Guiard Y, Diaz G, Beaubaton D (1983) Left-hand advantage in right-handers for spatial constant error: Preliminary evidence in a unimanual ballistic aimed movement. Neuropsychologia 21:111–115. (PMID: 684381110.1016/0028-3932(83)90106-9)
      Haggard P, Wing AM (1995) Coordinated responses following mechanical perturbation of the arm during prehension. Exp Brain Res 102:483–494. (PMID: 773739410.1007/BF00230652)
      Helsen WF, Starkes JL, Buekers MJ (1997) Effects of target eccentricity on temporal costs of point of gaze and the hand in aiming. Mot Control 1:161–177. (PMID: 10.1123/mcj.1.2.161)
      Helsen W, Elliott D, Starkes JL, Ricker K (1998a) Temporal and spatial coupling of point of gaze and hand movements in aiming. J Mot Behav 30:249–259. (PMID: 2003708210.1080/00222899809601340)
      Helsen W, Starkes JL, Elliott D, Buekers M (1998b) Manual asymmetries and saccadic eye movements in righthanders during single and reciprocal aiming movements. Cortex 34:513–530. (PMID: 980008710.1016/S0010-9452(08)70511-2)
      Helsen W, Elliott D, Starkes JL, Ricker K (2000) Coupling of eye, finger, elbow and shoulder movements during manual aiming. J Mot Behav 32:241–248. (PMID: 1097527210.1080/00222890009601375)
      Henriques DY, Crawford JD (2002) Role of eye, head, and shoulder geometry in the planning of accurate arm movements. J Neurophysiol 87:1677–1685. (PMID: 1192988910.1152/jn.00509.2001)
      Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594. (PMID: 9454863679273310.1523/JNEUROSCI.18-04-01583.1998)
      Heuer H (1981) Fast aiming movements with the left and right arm: evidence for two-process theories of motor control. Psychol Res 43:81–96. (PMID: 728014510.1007/BF00309640)
      Heuer H (2007) Control of the dominant and nondominant hand: exploitation and taming of nonmuscular forces. Exp Brain Res 178:363–373. (PMID: 1710321010.1007/s00221-006-0747-5)
      Heuer H, Hegele M, Rand MK (2013) Age-related variations in the control of electronic tools. In: Schlick C, Frieling E, Wegge J (eds) Age-differentiated work systems. Springer, Heidelberg, pp 369–390. (PMID: 10.1007/978-3-642-35057-3_16)
      Johansson RS, Westling G, Bäckström A, Flanagan JR (2001) Eye–hand coordination in object manipulation. J Neurosci 21:6917–6932. (PMID: 11517279676306610.1523/JNEUROSCI.21-17-06917.2001)
      Ketcham CJ, Seidler RD, Van Gemmert AWA, Stelmach GE (2002) Age-related kinematic differences as influenced by task difficulty, target size, and movement amplitude. J Gerontol Psychol Sci 57B:P54–P64. (PMID: 10.1093/geronb/57.1.P54)
      Khan MA, Franks IM, Goodman D (1998) The effect of practice on the control of rapid aiming movements: evidence for an interdependency between programming and feedback processing. Q J Exp Psychol A 51:425–443. (PMID: 10.1080/713755756)
      Khan MA, Lawrence G, Fourkas A, Franks IM, Elliott D, Pembroke S (2003) Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychol (amst) 113:83–97. (PMID: 10.1016/S0001-6918(02)00156-7)
      Khan MA, Franks IM, Elliott D, Lawrence GP, Chua R, Bernier PM, Hansen S, Weeks DJ (2006) Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neurosci Biobehav Rev 30:1106–1121. (PMID: 1683960410.1016/j.neubiorev.2006.05.002)
      Krakauer JW (2009) Motor learning and consolidation: The case of visuomotor rotation. Progress in motor control. Springer, New York, pp 405–421. (PMID: 10.1007/978-0-387-77064-2_21)
      Lenhard A, Hoffmann J (2007) Constant error in aiming movements without visual feedback is higher in the preferred hand. Laterality 12:227–238. (PMID: 1745457310.1080/13576500701203891)
      Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci 27:9354–9368. (PMID: 17728449667311710.1523/JNEUROSCI.1110-06.2007)
      Lünenburger L, Kutz FF, Hoffmann KP (2000) Influence of arm movements on saccades in humans. Eur J Neurosci 12:4107–4116. (PMID: 1106960710.1046/j.1460-9568.2000.00298.x)
      MacKenzie CL, Marteniuk RG, Dugas C, Liske D, Eickmeier B (1987) Three-dimensional movement trajectories in Fitts’ task: implications for control. Q J Exp Psychol 39A:629–647. (PMID: 10.1080/14640748708401806)
      McNamee D, Wolpert DM (2019) Internal models in biological control. Annu Rev Control Robot Auton Syst 2:339–364. (PMID: 31106294652023110.1146/annurev-control-060117-105206)
      Neggers SFW, Bekkering H (2000) Ocular gaze is anchored to the target of an ongoing pointing movement. J Neurophysiol 83:639–651. (PMID: 1066948010.1152/jn.2000.83.2.639)
      Neggers SFW, Bekkering H (2001) Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86:961–970. (PMID: 1149596410.1152/jn.2001.86.2.961)
      Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–114. (PMID: 514649110.1016/0028-3932(71)90067-4)
      Paillard J (1982) The contribution of peripheral and central vision to visually guided reaching. In: Ingle D, Goodale M, Mansfield R (eds) Analysis of visual behaviour. MIT Press, Cambridge, pp 367–385.
      Prablanc C, Echallier JE, Jeannerod M, Komilis E (1979a) Optimal response of eye and hand motor systems in pointing at a visual target. II. Static and dynamic visual cues in the control of hand movement. Biol Cybern 35:183–187. (PMID: 51893810.1007/BF00337063)
      Prablanc C, Eschallier JF, Komilis E, Jeannerod M (1979b) Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern 35:113–124. (PMID: 51893210.1007/BF00337436)
      Provins KA (1997) The specificity of motor skill and manual asymmetry: a review of the evidence and its implications. J Mot Behav 29:183–192. (PMID: 1245379410.1080/00222899709600832)
      Rand MK (2014) Segment interdependency and gaze anchoring during manual two-segment sequences. Exp Brain Res 232:2753–2765. (PMID: 2477085710.1007/s00221-014-3951-8)
      Rand MK (2020) Effects of auditory feedback on movements with two-segment sequence and eye-hand coordination: using a short auditory contact cue. Neurosci Lett 717:134695. (PMID: 3184673210.1016/j.neulet.2019.134695)
      Rand MK, Heuer H (2019) Effects of hand and hemispace on multisensory integration of hand position and visual feedback. Front Psychol 10:237. (PMID: 30809172637933210.3389/fpsyg.2019.00237)
      Rand MK, Heuer H (2020) A condition that produces sensory recalibration and abolishes multisensory integration. Cognition 202:104326. (PMID: 3246434410.1016/j.cognition.2020.104326)
      Rand MK, Rentsch S (2015) Gaze locations affect explicit process but not implicit process during visuomotor adaptation. J Neurophysiol 113:88–99. (PMID: 2525347710.1152/jn.00044.2014)
      Rand MK, Rentsch S (2016) Eye–hand coordination during visuomotor adaptation with different rotation angles: effects of terminal visual feedback. PLoS ONE 11:e0164602. (PMID: 27812093509458710.1371/journal.pone.0164602)
      Rand MK, Rentsch S (2017) Eye-hand coordination during visuomotor adaptation: effects of hemispace and joint coordination. Exp Brain Res 235:3645–3661. (PMID: 2890067310.1007/s00221-017-5088-z)
      Rand MK, Shimansky YP (2013a) Two-phase strategy of neural control for planar reaching movements. I. XY coordination variability and its relation to end-point variability. Exp Brain Res 225:55–73. (PMID: 2319680210.1007/s00221-012-3348-5)
      Rand MK, Shimansky YP (2013b) Two-phase strategy of neural control for planar reaching movements. II. Relation to spatiotemporal characteristics of movement trajectory. Exp Brain Res 230:1–13. (PMID: 2381173710.1007/s00221-013-3626-x)
      Rand MK, Stelmach GE (2010) Effects of hand termination and accuracy constraint on eye-hand coordination during sequential two-segment movements. Exp Brain Res 207:197–211. (PMID: 2096753710.1007/s00221-010-2456-3)
      Rand MK, Stelmach GE (2011) Adaptation of gaze anchoring through practice in young and older adults. Neurosci Lett 492:47–51. (PMID: 21276832304621010.1016/j.neulet.2011.01.051)
      Rand MK, Squire LM, Stelmach GE (2006) Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements. Exp Brain Res 174:74–85. (PMID: 16565810207790610.1007/s00221-006-0423-9)
      Rand MK, Shimansky YP, Hossain ABMI, Stelmach GE (2010) Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements. Exp Brain Res 207:49–63. (PMID: 2093118110.1007/s00221-010-2428-7)
      Rentsch S, Rand MK (2014) Eye-hand coordination during visuomotor adaptation with different rotation angles. PLoS ONE 9:e109819. (PMID: 25333942419812910.1371/journal.pone.0109819)
      Roy EA, MacKenzie C (1978) Handedness effects in kinesthetic spatial location judgements. Cortex 14:250–258. (PMID: 67970610.1016/S0010-9452(78)80051-3)
      Roy EA, Kalbfleisch L, Elliott D (1994) Kinematic analyses of manual asymmetries in visual aiming movements. Brain Cogn 24:289–295. (PMID: 818589910.1006/brcg.1994.1017)
      Sailer U, Flanagan JR, Johansson RS (2005) Eye-hand coordination during learning of a novel visuomotor task. J Neurosci 25:8833–8842. (PMID: 16192373672558310.1523/JNEUROSCI.2658-05.2005)
      Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258. (PMID: 1180757810.1007/s00221-001-0913-8)
      Sainburg RL (2014) Convergent models of handedness and brain lateralization. Front Psychol 5:1092. (PMID: 25339923418933210.3389/fpsyg.2014.01092)
      Sainburg RL, Schaefer SY (2004) Interlimb differences in control of movement extent. J Neurophysiol 92:1374–1383. (PMID: 1511579310.1152/jn.00181.2004)
      Sanders JA, Knill DC (2004) Visual feedback control of hand movements. J Neurosci 24:3223–3234. (PMID: 10.1523/JNEUROSCI.4319-03.2004)
      Serrien DJ, Cassidy MJ, Brown P (2003) The importance of the dominant hemisphere in the organization of bimanual movements. Hum Brain Mapp 18:296–305. (PMID: 12632467687191010.1002/hbm.10086)
      Shimansky YP, Rand MK (2013) Two-phase strategy of controlling motor coordination determined by task performance optimality. Biol Cybern 107:107–129. (PMID: 2320341910.1007/s00422-012-0537-z)
      Shimansky YP, Kang T, He J (2004) A novel model of motor learning capable of developing an optimal movement control law online from scratch. Biol Cybern 90:133–145. (PMID: 1499948010.1007/s00422-003-0452-4)
      Soechting JF (1984) Effect of target size on spatial and temporal characteristics of a pointing movement in man. Exp Brain Res 54:121–132. (PMID: 669814210.1007/BF00235824)
      Soechting JF, Flanders M (1992) Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu Rev Neurosci 15:167–191. (PMID: 157544110.1146/annurev.ne.15.030192.001123)
      Starkes J, Helsen W, Elliott D (2002) A ménage à trois: the eye, the hand and on-line processing. J Sports Sci 20:217–224. (PMID: 1199947710.1080/026404102317284772)
      Teasdale N, Bard C, Fleury M, Young D, Proteau L (1993) Determining movement onsets from temporal series. J Mot Behav 25:97–106. (PMID: 1506420110.1080/00222895.1993.9941644)
      Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915. (PMID: 15332089148887710.1038/nn1309)
      van Doorn RRA (2008) Manual asymmetries in the temporal and spatial control of aimed movements. Hum Mov Sci 27:551–576. (PMID: 1863936210.1016/j.humov.2007.11.006)
      van Beers RJ, Sittig AC, Denier van der Gon JJ (1999) Integration of proprioceptive and visual position-information: an experimentally supported model. J Neurophysiol 81:1355–1364. (PMID: 1008536110.1152/jn.1999.81.3.1355)
      Vesia M, Crawford JD (2012) Specialization of reach function in human posterior parietal cortex. Exp Brain Res 221:1–18. (PMID: 2277710210.1007/s00221-012-3158-9)
      Vieluf S, Massing M, Blandin Y, Leinen P, Panzer S (2015) The role of eye movements in motor sequence learning. Hum Mov Sci 40:220–236. (PMID: 2561799210.1016/j.humov.2015.01.004)
      Vindras P, Viviani P (2005) Planning short pointing sequences. Exp Brain Res 160:141–153. (PMID: 1525871510.1007/s00221-004-1995-x)
      Wang J, Sainburg RL (2007) The dominant and nondominant arms are specialized for stabilizing different features of task performance. Exp Brain Res 178:565–570. (PMID: 1738032310.1007/s00221-007-0936-x)
      Wilson ET, Wong J, Gribble PL (2010) Mapping proprioception across a 2D horizontal workspace. PLoS ONE 5:e11851. (PMID: 20686612291229710.1371/journal.pone.0011851)
      Woytowicz EJ, Westlake KP, Whitall J, Sainburg RL (2018) Handedness results from complementary hemispheric dominance, not global hemispheric dominance: evidence from mechanically coupled bilateral movements. J Neurophysiol 120:729–740. (PMID: 29742023713232310.1152/jn.00878.2017)
    • Grant Information:
      Ra 2183/1-3 Deutsche Forschungsgemeinschaft
    • Contributed Indexing:
      Keywords: Eye movement; Eye-hand coordination; Handedness; Movement amplitude; Practice; Task difficulty
    • Publication Date:
      Date Created: 20220402 Date Completed: 20220427 Latest Revision: 20220427
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s00221-022-06357-z
    • Accession Number:
      35366070