No indications for altered EEG oscillatory activity in patients with chronic post-burn itch compared to healthy controls.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      A large proportion of patients with burn injuries develop chronic itch, which impacts quality of life. The underlying pathophysiological mechanisms are poorly understood. This cross-sectional pilot study investigates whether altered cortical oscillatory processes are involved in chronic post-burn itch. Continuous electroencephalography (EEG) data were recorded during rest and stimulation of non-injured skin, inducing itch (histamine and electrical) and cold-pressor task pain for 15 adults with chronic post-burn itch and 15 matched healthy controls. Quantitative metrics comprised oscillatory power and peak frequencies in theta, alpha, and beta bands. No statistical differences between patients and healthy controls were found in oscillatory activity during rest or stimulation, with Bayesian analysis suggesting equivocal evidence. However, post-traumatic stress symptoms and duration of chronic itch may be associated with changes in oscillatory activity. A lack of differences in cortical oscillatory processing and itch levels at non-injured sites, suggests that itch symptoms have a localised character in this sample of patients with post-burn itch. For future studies, a biopsychological approach with integration of peripheral and central nervous system techniques, linear and non-linear EEG analysis, injured and non-injured stimulation sites, and incorporation of individual characteristics is recommended. Insight into pathophysiological mechanisms underlying chronic post-burn itch could improve diagnostics and treatments.
      (© 2022. The Author(s).)
    • References:
      Carrougher, G. J. et al. Pruritus in adult burn survivors: postburn prevalence and risk factors associated with increased intensity. J. Burn Care Res. 34, 94–101 (2013). (PMID: 2307956510.1097/BCR.0b013e3182644c25)
      Goutos, I., Dziewulski, P. & Richardson, P. M. Pruritus in burns: review article. J. Burn Care Res. 30, 221–228 (2009). (PMID: 1916511010.1097/BCR.0b013e318198a2fa)
      Van Loey, N. E., Bremer, M., Faber, A. W., Middelkoop, E. & Nieuwenhuis, M. K. Itching following burns: epidemiology and predictors. Br. J. Dermatol. 158, 95–100 (2008). (PMID: 17986307)
      Goutos, I. Neuropathic mechanisms in the pathophysiology of burns pruritus: redefining directions for therapy and research. J. Burn Care Res. 34, 82–93 (2013). (PMID: 2313521110.1097/BCR.0b013e3182644c44)
      Parnell, L. K., Nedelec, B., Rachelska, G. & LaSalle, L. Assessment of pruritus characteristics and impact on burn survivors. J. Burn Care Res. 33, 407–418 (2012). (PMID: 2221006510.1097/BCR.0b013e318239d206)
      Kuipers, H. C. et al. Itch in burn areas after skin transplantation: patient characteristics, influencing factors and therapy. Acta Derm. Venereol. 95, 451–456 (2015). (PMID: 2517819010.2340/00015555-1960)
      Nedelec, B. & LaSalle, L. Postburn Itch: a review of the literature. Wounds 30, E118–E124 (2018). (PMID: 29406295)
      Fowler, E. & Yosipovitch, G. Post-burn pruritus and its management—current and new avenues for treatment. Curr. Trauma Rep. 5, 90–98 (2019). (PMID: 10.1007/s40719-019-00164-8)
      Kaul, I., Amin, A., Rosenberg, M., Rosenberg, L. & Meyer, W. J. 3rd. Use of gabapentin and pregabalin for pruritus and neuropathic pain associated with major burn injury: a retrospective chart review. Burns 44, 414–422 (2018). (PMID: 2882259210.1016/j.burns.2017.07.018)
      Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2-15 (2011). (PMID: 2096168510.1016/j.pain.2010.09.030)
      Andersen, H. H. et al. Alloknesis and hyperknesis-mechanisms, assessment methodology, and clinical implications of itch sensitization. Pain 159, 1185–1197 (2018). (PMID: 2965946910.1097/j.pain.0000000000001220)
      van Laarhoven, A. I. M. et al. Itch sensitization? A systematic review of studies using quantitative sensory testing in patients with chronic itch. Pain 160, 2661–2678 (2019). (PMID: 3140804810.1097/j.pain.0000000000001678)
      Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006). (PMID: 1679114310.1038/nrn1950)
      van Laarhoven, A. I. et al. Psychophysiological processing of itch in patients with chronic post-burn itch: an exploratory study. Acta Derm. Venereol. 96, 613–618 (2016). (PMID: 2669474510.2340/00015555-2323)
      Schmidt, S. et al. Pain ratings, psychological functioning and quantitative EEG in a controlled study of chronic back pain patients. PLoS One 7, e31138 (2012).
      Sarnthein, J., Stern, J., Aufenberg, C., Rousson, V. & Jeanmonod, D. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129, 55–64 (2006). (PMID: 1618366010.1093/brain/awh631)
      Bautista, D. M., Wilson, S. R. & Hoon, M. A. Why we scratch an itch: the molecules, cells and circuits of itch. Nat. Neurosci. 17, 175–182 (2014). (PMID: 24473265436440210.1038/nn.3619)
      Dhand, A. & Aminoff, M. J. The neurology of itch. Brain 137, 313–322 (2014). (PMID: 2379460510.1093/brain/awt158)
      Dong, X. & Dong, X. Peripheral and central mechanisms of itch. Neuron 98, 482–494 (2018). (PMID: 29723501602276210.1016/j.neuron.2018.03.023)
      Lee, J. S., Han, J. S., Lee, K., Bang, J. & Lee, H. The peripheral and central mechanisms underlying itch. BMB Rep. 49, 474–487 (2016). (PMID: 27418284522714010.5483/BMBRep.2016.49.9.108)
      Roberts, C. A. et al. Where is itch represented in the brain, and how does it differ from pain? An activation likelihood estimation meta-analysis of experimentally-induced itch. J. Invest. Dermatol. 139, 2245–2248.e3 (2019).
      Vuckovic, A. et al. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J. Pain 15, 645–655 (2014). (PMID: 24589821405852610.1016/j.jpain.2014.02.005)
      Vuckovic, A., Jajrees, M., Purcell, M., Berry, H. & Fraser, M. Electroencephalographic Predictors of Neuropathic Pain in Subacute Spinal Cord Injury. J. Pain 19, 1256 e1251–1256 e1217 (2018).
      Cohen, M. X. Analyzing Neural Time Series Data: Theory and Practice. (MIT Press, 2014).
      Mazaheri, A., Slagter, H. A., Thut, G. & Foxe, J. J. Orchestration of brain oscillations: principles and functions. Eur. J. Neurosci. 48, 2385–2388 (2018). (PMID: 3027689510.1111/ejn.14189)
      Ploner, M., Sorg, C. & Gross, J. Brain rhythms of pain. Trends Cognit. Sci. 21, 100–110 (2017). (PMID: 10.1016/j.tics.2016.12.001)
      de Vries, M. et al. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain. J. Pain Res. 6, 815–824 (2013). (PMID: 24379694384364210.2147/JPR.S50919)
      Walton, K. D., Dubois, M. & Llinas, R. R. Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) type I. Pain 150, 41–51 (2010). (PMID: 2033868710.1016/j.pain.2010.02.023)
      Lim, M., Kim, J. S., Kim, D. J. & Chung, C. K. Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients. Front. Hum. Neurosci. 10, 111 (2016). (PMID: 27014041478946310.3389/fnhum.2016.00111)
      Ta Dinh, S. et al. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain 160, 2751–2765 (2019).
      Da Silva, F. L. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 79, 81–93 (1991). (PMID: 10.1016/0013-4694(91)90044-5)
      Samaha, J. & Postle, B. R. The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Curr. Biol. 25, 2985–2990 (2015). (PMID: 26526370465464110.1016/j.cub.2015.10.007)
      Mochizuki, H., Inui, K., Yamashiro, K., Ootsuru, N. & Kakigi, R. Itching-related somatosensory evoked potentials. Pain 138, 598–603 (2008). (PMID: 1837839710.1016/j.pain.2008.02.017)
      Mochizuki, H., Hernandez, L. E. & Yosipovitch, G. What does brain imaging tell us about itch? Itch 4, e23 (2019).
      Miraval, F. K. et al. A preliminary study on qEEG in burn patients with chronic pruritus. Ann. Rehabil. Med. 41, 693–700 (2017). (PMID: 28971055560867810.5535/arm.2017.41.4.693)
      Bakker, A., Van Loey, N. E., Van der Heijden, P. G. & Van Son, M. J. Acute stress reactions in couples after a burn event to their young child. J. Pediatr. Psychol. 37, 1127–1135 (2012). (PMID: 2283674710.1093/jpepsy/jss083)
      Ishii, R. et al. Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiology 75, 151–161 (2018). (PMID: 10.1159/000486870)
      Hoshi, H. & Shigihara, Y. Age- and gender-specific characteristics of the resting-state brain activity: a magnetoencephalography study. Aging (Albany. NY). 12, 21613–21637 (2020).
      Kwa, K. A. A. et al. Course and predictors of pruritus following burns: a multilevel analysis. Acta Derm. Venereol. 98, 636–640 (2018). (PMID: 2996368210.2340/00015555-2935)
      Horowitz, M., Wilner, N. & Alvarez, W. Impact of event scale: a measure of subjective stress. Psychosom. Med. 41, 209–218 (1979). (PMID: 47208610.1097/00006842-197905000-00004)
      Sundin, E. C. & Horowitz, M. J. Impact of event scale: psychometric properties. Br. J. Psychiatry 180, 205–209 (2002). (PMID: 1187251110.1192/bjp.180.3.205)
      Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999). (PMID: 1020923110.1016/S0165-0173(98)00056-3)
      Case, M. et al. Increased theta band EEG power in sickle cell disease patients. J. Pain Res. 11, 67–76 (2018). (PMID: 2934398210.2147/JPR.S145581)
      Olesen, S. S. et al. Slowed EEG rhythmicity in patients with chronic pancreatitis: evidence of abnormal cerebral pain processing?. Eur. J. Gastroenterol. Hepatol. 23, 418–424 (2011). (PMID: 2139950610.1097/MEG.0b013e3283457b09)
      Stern, J., Jeanmonod, D. & Sarnthein, J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 31, 721–731 (2006). (PMID: 1652749310.1016/j.neuroimage.2005.12.042)
      Thibaut, A., Zeng, D., Caumo, W., Liu, J. & Fregni, F. Corticospinal excitability as a biomarker of myofascial pain syndrome. Pain Rep. 2, e594 (2017).
      de Tommaso, M., Marinazzo, D. & Stramaglia, S. The measure of randomness by leave-one-out prediction error in the analysis of EEG after laser painful stimulation in healthy subjects and migraine patients. Clin. Neurophysiol. 116, 2775–2782 (2005). (PMID: 1625355610.1016/j.clinph.2005.08.019)
      Park, J. H., Kim, S., Kim, C. H., Cichocki, A. & Kim, K. Multiscale entropy analysis of EEG from patients under different pathological conditions. Fractals 15, 399–404 (2007). (PMID: 10.1142/S0218348X07003691)
      Michel, C. M. & Brunet, D. EEG source imaging: a practical review of the analysis steps. Front. Neurol. 10, 325 (2019). (PMID: 31019487645826510.3389/fneur.2019.00325)
      Pernet, C. et al. Best practices in data analysis and sharing in neuroimaging using MEEG. Pre-print at https://osf.io/a8dhx/ (2020).
      Sveen, J. et al. Psychometric properties of the Impact of Event Scale-Revised in patients one year after burn injury. J. Burn Care Res. 31, 310–318 (2010). (PMID: 2018237310.1097/BCR.0b013e3181d0f523)
      Bartels, D. J. P. et al. Role of conditioning and verbal suggestion in placebo and nocebo effects on itch. PLoS One 9, e91727 (2014).
      van Laarhoven, A. Correction: psychophysiological processing of itch in patients with chronic post-burn itch: an exploratory study. Acta Derm. Venereol. 99, 357 (2019). (PMID: 30817834)
      Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).
      Rainero, I. et al. Quantitative EEG responses to ischaemic arm stress in migraine. Cephalalgia 21, 224–229 (2001). (PMID: 1144255810.1046/j.1468-2982.2001.00209.x)
      Maquet, D., Croisier, J. L., Demoulin, C. & Crielaard, J. M. Pressure pain thresholds of tender point sites in patients with fibromyalgia and in healthy controls. Eur. J. Pain 8, 111–117 (2004). (PMID: 1498762010.1016/S1090-3801(03)00082-X)
      Brotzner, C. P., Klimesch, W., Doppelmayr, M., Zauner, A. & Kerschbaum, H. H. Resting state alpha frequency is associated with menstrual cycle phase, estradiol and use of oral contraceptives. Brain Res. 1577, 36–44 (2014). (PMID: 25010817415255210.1016/j.brainres.2014.06.034)
      Furman, A. J. et al. Cerebral peak alpha frequency predicts individual differences in pain sensitivity. Neuroimage 167, 203–210 (2018). (PMID: 2917520410.1016/j.neuroimage.2017.11.042)
      Furman, A. J. et al. Sensorimotor peak alpha frequency is a reliable biomarker of prolonged pain sensitivity. Cereb. Cortex 30, 6069–6082 (2020). (PMID: 32591813773203410.1093/cercor/bhaa124)
      Furman, A. J. et al. Cerebral peak alpha frequency reflects average pain severity in a human model of sustained, musculoskeletal pain. J. Neurophysiol. 122, 1784–1793 (2019). (PMID: 31389754684310510.1152/jn.00279.2019)
      Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013). (PMID: 24324449384033110.3389/fpsyg.2013.00863)
      The JASP Team. JASP Version 0.14.1 https://jasp-stats.org/download (2020).
      Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995). (PMID: 10.1080/01621459.1995.10476572)
    • Grant Information:
      QUE 15-019 United States HX HSRD VA
    • Publication Date:
      Date Created: 20220326 Date Completed: 20220506 Latest Revision: 20221023
    • Publication Date:
      20231215
    • Accession Number:
      PMC8956573
    • Accession Number:
      10.1038/s41598-022-08742-8
    • Accession Number:
      35338171