Membrane extraction by calmodulin underpins the disparate signalling of RalA and RalB.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Chamberlain SG;Chamberlain SG; Owen D; Owen D; Mott HR; Mott HR
  • Source:
    BioEssays : news and reviews in molecular, cellular and developmental biology [Bioessays] 2022 Jun; Vol. 44 (6), pp. e2200011. Date of Electronic Publication: 2022 Mar 23.
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 8510851 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-1878 (Electronic) Linking ISSN: 02659247 NLM ISO Abbreviation: Bioessays Subsets: MEDLINE
    • Publication Information:
      Publication: <2005->: Hoboken, N.J. : Wiley
      Original Publication: Cambridge, UK : Published for the ICSU Press by Cambridge University Press, c1984-
    • Subject Terms:
    • Abstract:
      Both RalA and RalB interact with the ubiquitous calcium sensor, calmodulin (CaM). New structural and biophysical characterisation of these interactions strongly suggests that, in the native membrane-associated state, only RalA can be extracted from the membrane by CaM and this non-canonical interaction could underpin the divergent signalling roles of these closely related GTPases. The isoform specificity for RalA exhibited by CaM is hypothesised to contribute to the disparate signalling roles of RalA and RalB in mitochondrial dynamics. This would lead to CaM shuttling RalA to the mitochondrial membrane but leaving RalB localisation unperturbed, and in doing so triggering mitochondrial fission pathways rather than mitophagy.
      (© 2022 The Authors. BioEssays published by Wiley Periodicals LLC.)
    • References:
      Bodemann, B. O. & White, M. A. (2008). Ral GTPases and cancer: Linchpin support of the tumorigenic platform. Nature Reviews Cancer, 8(2), 133-140. https://doi.org/10.1038/nrc2296.
      Pollock, S. R., Schinlever, A. R., Rohani, A., Kashatus, J. A., & Kashatus, D. F. (2019). RalA and RalB relocalization to depolarized mitochondria depends on clathrin-mediated endocytosis and facilitates TBK1 activation. PLoS One, 14(4), e0214764. https://doi.org/10.1371/journal.pone.0214764.
      Kashatus, D. F., Lim, K.-H., Brady, D. C., Pershing, N. L. K., Cox, A. D., & Counter, C. M. (2011). RALA and RALBP1 regulate mitochondrial fission at mitosis. Nature Cell Biology, 13(9), 1108-1115. https://doi.org/10.1038/ncb2310.
      Lim, K.-H., Brady, D. C., Kashatus, D. F., Ancrile, B. B., Der, C. J., Cox, A. D., & Counter, C. M. (2010). Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Molecular and Cellular Biology, 30(2), 508-523. https://doi.org/10.1128/MCB.00916-08.
      Martin, T. D., Mitin, N., Cox, A. D., Yeh, J. J., & Der, C. J. (2012). Phosphorylation by protein kinase Cα regulates RalB small GTPase protein activation, subcellular localization, and effector utilization. Journal of Biological Chemistry, 287(18), 14827-14836. https://doi.org/10.1074/jbc.M112.344986.
      Bodemann, B. O., Orvedahl, A., Cheng, T., Ram, R. R., Ou, Y.-H., Formstecher, E., Maiti, M., Hazelett, C. C., Wauson, E. M., Balakireva, M., Camonis, J. H., Yeaman, C., Levine, B., & White, M. A. (2011). RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell, 144(2), 253-267. https://doi.org/10.1016/j.cell.2010.12.018.
      Neel, N. F., Rossman, K. L., Martin, T. D., Hayes, T. K., Yeh, J. J., & Der, C. J. (2012). The RalB small GTPase mediates formation of invadopodia through a GTPase-activating protein-independent function of the RalBP1/RLIP76 effector. Molecular and Cellular Biology, 32(8), 1374-1386. https://doi.org/10.1128/mcb.06291-11.
      Oxford, G., Owens, C. R., Titus, B. J., Foreman, T. L., Herlevsen, M. C., Smith, S. C., & Theodorescu, D. (2005). RalA and RalB: Antagonistic relatives in cancer cell migration. Cancer Research, 65(16), 7111-7120. https://doi.org/10.1158/0008-5472.CAN-04-1957.
      Cornish, J., Chamberlain, S. G., Owen, D., & Mott, H. R. (2020). Intrinsically disordered proteins and membranes: A marriage of convenience for cell signalling? Biochemical Society Transactions, 48(6), 2669-2689. https://doi.org/10.1042/BST20200467.
      Chamberlain, S. G., Gohlke, A., Shafiq, A., Squires, I. J., Owen, D., & Mott, H. R. (2021). Calmodulin extracts the Ras family protein RalA from lipid bilayers by engagement with two membrane-targeting motifs. Proceedings of the National Academy of Sciences of the United States of America, 118(36), e2104219118. https://doi.org/10.1073/PNAS.2104219118/.
      Clough, R. R., Sidhu, R. S., & Bhullar, R. P. (2002). Calmodulin binds RalA and RalB and is required for the thrombin-induced activation of Ral in human platelets. The Journal of Biological Chemistry, 277(32), 28972-28980. https://doi.org/10.1074/jbc.M201504200.
      Sidhu, R. S., Elsaraj, S. M., Grujic, O., & Bhullar, R. P. (2005). Calmodulin binding to the small GTPase Ral requires isoprenylated Ral. Biochemical and Biophysical Research Communications, 336(1), 105-109. https://doi.org/10.1016/j.bbrc.2005.08.053.
      Grant, B. M. M., Enomoto, M., Ikura, M., & Marshall, C. B. (2020). A non-canonical calmodulin target motif comprising a polybasic region and lipidated terminal residue regulates localization. International Journal of Molecular Sciences 21(8), 2751. https://doi.org/10.3390/ijms21082751.
      Grant, B. M. M., Enomoto, M., Back, S. I., Lee, K. Y., Gebregiworgis, T., Ishiyama, N., Ikura, M., & Marshall, C. B. (2020). Calmodulin disrupts plasma membrane localization of farnesylated KRAS4b by sequestering its lipid moiety. Science Signaling, 13(625), eaaz0344. https://doi.org/10.1126/scisignal.aaz0344.
      Hussain, S. S., Tran, T. M., Ware, T. B., Luse, M. A., Prevost, C. T., Ferguson, A. N., Kashatus, J. A., Hsu, K. L., & Kashatus, D. F. (2021). RalA and PLD1 promote lipid droplet growth in response to nutrient withdrawal. Cell Reports, 36(4), 109451. https://doi.org/10.1016/j.celrep.2021.109451.
      Luo, J. Q., Liu, X., Hammond, S. M., Colley, W. C., Feig, L. A., Frohman, M. A., Morris, A. J., & Foster, D. A. (1997). RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1. Biochemical and Biophysical Research Communications, 235(3), 854-859. https://doi.org/10.1006/bbrc.1997.6793.
      Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J., & Harper, J. W. (2015). The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Molecular Cell, 60(1), 7-20. https://doi.org/10.1016/j.molcel.2015.08.016.
      Bo, T., Yamamori, T., Suzuki, M., Sakai, Y., Yamamoto, K., & Inanami, O. (2018). Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Biochemical and Biophysical Research Communications, 495(2), 1601-1607. https://doi.org/10.1016/j.bbrc.2017.12.012.
      Shao, S., & Hegde, R. S. (2011). A calmodulin-dependent translocation pathway for small secretory proteins. Cell, 147(7), 1576-1588. https://doi.org/10.1016/j.cell.2011.11.048.
      Aich, A., & Shaha, C. (2013). Novel role of calmodulin in regulating protein transport to mitochondria in a unicellular eukaryote. Molecular and Cellular Biology, 33(22), 4579-4593. https://doi.org/10.1128/mcb.00829-13.
      Zhou, Y., Prakash, P., Liang, H., Cho, K.-J., Gorfe, A. A., & Hancock, J. F. (2017). Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell, 168(1), 239-251.e16. https://doi.org/10.1016/j.cell.2016.11.059.
      Barceló, C., Paco, N., Beckett, A. J., Alvarez-Moya, B., Garrido, E., Gelabert, M., Tebar, F., Jaumot, M., Prior, I., & Agell, N. (2013). Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. Journal of Cell Science, 126(20), 4553-4559. https://doi.org/10.1242/jcs.123737.
      Barceló, C., Paco, N., Morell, M., Alvarez-Moya, B., Bota-Rabassedas, N., Jaumot, M., Vilardell, F., Capella, G., & Agell, N. (2014). Phosphorylation at ser-181 of oncogenic KRAS is required for tumor growth. Cancer Research, 74(4), 1190-1199. https://doi.org/10.1158/0008-5472.CAN-13-1750.
      Ghosh, S., Ball, W. B., Madaris, T. R., Srikantan, S., Madesh, M., Mootha, V. K., & Gohil, V. M. (2020). An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter. Proceedings of the National Academy of Sciences of the United States of America, 117(28), 16383-16390. https://doi.org/10.1073/PNAS.2000640117/-/DCSUPPLEMENTAL.
      Schmick, M., Kraemer, A., & Bastiaens, P. I. H. (2015). Ras moves to stay in place. Trends in Cell Biology, 25(4), 190-197. https://doi.org/10.1016/j.tcb.2015.02.004.
      Schmick, M., Vartak, N., Papke, B., Kovacevic, M., Truxius, D. C., Rossmannek, L., & Bastiaens, P. I. H. (2014). KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport. Cell, 157(2), 459-471. https://doi.org/10.1016/j.cell.2014.02.051.
      Hoffman, G. R., Nassar, N., & Cerione, R. A. (2000). Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell, 100(3), 345-356. https://doi.org/10.1016/S0092-8674(00)80670-4.
      Johnson, J. L., Erickson, J. W., & Cerione, R. A. (2009). New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. Journal of Biological Chemistry, 284(35), 23860-23871. https://doi.org/10.1074/jbc.M109.031815.
      Dharmaiah, S., Bindu, L., Tran, T. H., Gillette, W. K., Frank, P. H., Ghirlando, R., Nissley, D. V., Esposito, D., McCormick, F., Stephen, A. G., & Simanshu, D. K. (2016). Structural basis of recognition of farnesylated and methylated KRAS4b by PDEd. Proceedings of the National Academy of Sciences of the United States of America, 113(44), E6766-E6775. https://doi.org/10.1073/pnas.1615316113.
      Chandra, A., Grecco, H. E., Pisupati, V., Perera, D., Cassidy, L., Skoulidis, F., Ismail, S. A., Hedberg, C., Hanzal-Bayer, M., Venkitaraman, A. R., Wittinghofer, A., & Bastiaens, P. I. H. (2012). The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nature Cell Biology, 14(2), 148-158. https://doi.org/10.1038/ncb2394.
    • Grant Information:
      BB/E013228/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; BB/P504853/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
    • Contributed Indexing:
      Keywords: RalA; RalB; calmodulin; isoprenylation; membrane binding; mitochondria; small GTPase
    • Accession Number:
      0 (Calmodulin)
      0 (Protein Isoforms)
      EC 3.6.1.- (GTP Phosphohydrolases)
    • Publication Date:
      Date Created: 20220323 Date Completed: 20220524 Latest Revision: 20230705
    • Publication Date:
      20240829
    • Accession Number:
      10.1002/bies.202200011
    • Accession Number:
      35318680