Clinical and economic impact of 'ROS1-testing' strategy compared to a 'no-ROS1-testing' strategy in advanced NSCLC in Spain.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100967800 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2407 (Electronic) Linking ISSN: 14712407 NLM ISO Abbreviation: BMC Cancer Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2001-
    • Subject Terms:
    • Abstract:
      Background: Detection of the ROS1 rearrangement is mandatory in patients with advanced or metastatic non-small cell lung cancer (NSCLC) to allow targeted therapy with specific inhibitors. However, in Spanish clinical practice ROS1 determination is not yet fully widespread. The aim of this study is to determine the clinical and economic impact of sequentially testing ROS1 in addition to EGFR and ALK in Spain.
      Methods: A joint model (decision-tree and Markov model) was developed to determine the cost-effectiveness of testing ROS1 strategy versus a no-ROS1 testing strategy in Spain. Distribution of ROS1 techniques, rates of testing, positivity, and invalidity of biomarkers included in the analysis (EGFR, ALK, ROS1 and PD-L1) were based on expert opinion and Lungpath real-world database. Treatment allocation depending on the molecular testing results was defined by expert opinion. For each treatment, a 3-states Markov model was developed, where progression-free survival (PFS) and overall survival (OS) curves were parameterized using exponential extrapolations to model transition of patients among health states. Only medical direct costs were included (€ 2021). A lifetime horizon was considered and a discount rate of 3% was applied for both costs and effects. Both deterministic and probabilistic sensitivity analyses were performed to address uncertainty.
      Results: A target population of 8755 patients with advanced NSCLC (non-squamous or never smokers squamous) entered the model. Over a lifetime horizon, the ROS1 testing scenario produced additional 157.5 life years and 121.3 quality-adjusted life years (QALYs) compared with no-ROS1 testing scenario. Total direct costs were increased up to € 2,244,737 for ROS1 testing scenario. The incremental cost-utility ratio (ICUR) was 18,514 €/QALY. Robustness of the base-case results were confirmed by the sensitivity analysis.
      Conclusions: Our study shows that ROS1 testing in addition to EGFR and ALK is a cost-effective strategy compared to no-ROS1 testing, and it generates more than 120 QALYs in Spain over a lifetime horizon. Despite the low prevalence of ROS1 rearrangements in NSCLC patients, the clinical and economic consequences of ROS1 testing should encourage centers to test all advanced or metastatic NSCLC (non-squamous and never-smoker squamous) patients.
      (© 2022. The Author(s).)
    • References:
      BMC Cancer. 2021 Jun 10;21(1):689. (PMID: 34112097)
      Lancet Oncol. 2017 Nov;18(11):1454-1466. (PMID: 28958502)
      Clin Transl Oncol. 2015 Feb;17(2):103-12. (PMID: 25351175)
      N Engl J Med. 2018 Jan 11;378(2):113-125. (PMID: 29151359)
      Breast Cancer Res Treat. 2016 Jan;155(2):223-34. (PMID: 26749360)
      J Thorac Oncol. 2018 Oct;13(10):1474-1482. (PMID: 29935306)
      Pharmacoeconomics. 2018 Apr;36(4):495-504. (PMID: 29488070)
      J Thorac Oncol. 2014 Dec;9(12):1816-20. (PMID: 25393795)
      J Clin Oncol. 2021 Jul 20;39(21):2339-2349. (PMID: 33872070)
      N Engl J Med. 2018 Jun 14;378(24):2288-2301. (PMID: 29863955)
      Lung Cancer. 2019 Jan;127:44-52. (PMID: 30642550)
      Clin Transl Oncol. 2015 Sep;17(9):702-9. (PMID: 25990507)
      Discov Med. 2019 Mar;27(148):167-170. (PMID: 31095926)
      Curr Oncol. 2021 Aug 25;28(5):3268-3279. (PMID: 34449580)
      ESMO Open. 2020 Nov;5(6):e001021. (PMID: 33214227)
      Diagnostics (Basel). 2016 Jan 06;6(1):. (PMID: 26838801)
      N Engl J Med. 2006 Dec 14;355(24):2542-50. (PMID: 17167137)
      BMC Cancer. 2020 Sep 14;20(1):875. (PMID: 32928143)
      J Thorac Oncol. 2021 Feb;16(2):197-204. (PMID: 33109473)
      Cancer. 2019 Mar 15;125(6):892-901. (PMID: 30512189)
      Ann Oncol. 2020 Aug;31(8):1056-1064. (PMID: 32418886)
      J Thorac Oncol. 2016 Jul;11(7):1140-52. (PMID: 27094798)
      J Clin Oncol. 2018 May 10;36(14):1405-1411. (PMID: 29596029)
      Ann Oncol. 2018 Jun 1;29(6):1409-1416. (PMID: 29668860)
      Pharmacoeconomics. 2000 May;17(5):479-500. (PMID: 10977389)
      Clin Lung Cancer. 2017 Jan;18(1):60-67. (PMID: 27919627)
      J Clin Pathol. 2022 Mar;75(3):193-200. (PMID: 33722840)
      N Engl J Med. 2016 Nov 10;375(19):1823-1833. (PMID: 27718847)
      Lancet. 2021 Aug 7;398(10299):535-554. (PMID: 34273294)
      N Engl J Med. 2020 Jan 2;382(1):41-50. (PMID: 31751012)
      Clin Chem. 2017 Mar;63(3):751-760. (PMID: 28073897)
      Expert Rev Mol Diagn. 2021 May;21(5):437-444. (PMID: 33899645)
      Gac Sanit. 2010 Mar-Apr;24(2):154-70. (PMID: 19959258)
      Discov Med. 2018 Oct;26(143):155-166. (PMID: 30586539)
      Gac Sanit. 2020 Mar - Apr;34(2):189-193. (PMID: 31558385)
      Arch Pathol Lab Med. 2018 Mar;142(3):321-346. (PMID: 29355391)
      Transl Lung Cancer Res. 2019 Aug;8(4):461-475. (PMID: 31555519)
      Health Econ. 2018 Apr;27(4):746-761. (PMID: 29282798)
      Ann Oncol. 2018 Oct 1;29(Suppl 4):iv192-iv237. (PMID: 30285222)
      Lung Cancer. 2021 Apr;154:161-175. (PMID: 33690091)
      J Thorac Oncol. 2019 Dec;14(12):2120-2132. (PMID: 31349061)
      BMJ Open. 2019 Dec 11;9(12):e031019. (PMID: 31831534)
      J Clin Pathol. 2022 Mar;75(3):145-153. (PMID: 33875457)
      J Clin Oncol. 2020 May 10;38(14):1505-1517. (PMID: 32150489)
      Clin Transl Oncol. 2020 Jul;22(7):989-1003. (PMID: 31598903)
      Oncotarget. 2016 Nov 15;7(46):75145-75154. (PMID: 27738334)
      Cancer Med. 2016 Oct;5(10):2688-2693. (PMID: 27544536)
      Ann Oncol. 2019 Jul 1;30(7):1121-1126. (PMID: 30980071)
      Lung Cancer (Auckl). 2017 Jul 07;8:45-55. (PMID: 28740441)
    • Contributed Indexing:
      Keywords: Biomarker guided selection; C-ros oncogene 1; Cost-effectiveness analysis; Molecular testing; Non-small cell lung cancer
    • Accession Number:
      0 (Biomarkers, Tumor)
      0 (Proto-Oncogene Proteins)
      EC 2.7.10.1 (Protein-Tyrosine Kinases)
      EC 2.7.10.1 (ROS1 protein, human)
    • Publication Date:
      Date Created: 20220319 Date Completed: 20220324 Latest Revision: 20220324
    • Publication Date:
      20231215
    • Accession Number:
      PMC8933896
    • Accession Number:
      10.1186/s12885-022-09397-4
    • Accession Number:
      35303812